Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T09:37:40.774Z Has data issue: false hasContentIssue false

Lattice Distortions and Domain Structure in Epitaxial Manganite Thin Films

Published online by Cambridge University Press:  10 February 2011

Y. Suzuki
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Yan Wu
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
U. Rüdiger
Affiliation:
Dept. of Physics, New York University, New York, NY 10003
J. Yu
Affiliation:
Dept. of Physics, New York University, New York, NY 10003
A.D. Kent
Affiliation:
Dept. of Physics, New York University, New York, NY 10003
T.K. Nath
Affiliation:
Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 20008
C.B. Eom
Affiliation:
Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC 20008
Get access

Abstract

Lattice distortions, be they in the form of chemical and hydrostatic pressure in bulk or lattice mismatch between film and substrate, have significant effects on the transport as well as the magnetic properties of colossal magnetoresistance (CMR) materials. We summarize here our results on tensilely and compressively strained La0.7Sr0.3MnO3 (LSMO) thin films that indicate the important role of lattice distortions due to the lattice mismatch between the film and substrate. The strain due to lattice distortions can be used to tune the magnetic domain structure, magnetization, magnetic anisotropy and magnetotransport of LSMO thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jin, S., Tiefel, T.H., McCormack, M., O'Bryan, H.M., Chen, L.H., Ramesh, R. and Schurig, D., Appl. Phys. Lett. 67, 557 (1995).Google Scholar
2. Hwang, H.Y., Palstra, T.T.M., Cheong, S.-W. and Batlogg, B., Phys. Rev. B 52, 15046 (1995).Google Scholar
3. Ibarra, M.R., Algarabel, P.A., Marquina, C., Basco, J. and Garcia, J., Phys. Rev. Lett. 75, 3541 (1995).Google Scholar
4. Neumeier, J.J., Hundley, M.F., Thompson, J.D. and Heffner, R.H., Phys. Rev. B 52 R7006 (1995).Google Scholar
5. O'Donnell, J., Rzchowski, M.S., Eckstein, J.N., Bosovic, I., Appl. Phys. Lett. 69, 1312 (1996).Google Scholar
O'Donnell, J., Rzchowski, M.S., Eckstein, J.N. and Bosovic, I., Appl. Phys. Lett. 72, 1775 (1998).Google Scholar
6. Suzuki, Y., Hwang, H.Y., Cheong, S-W. and Dover, R.B. van, Appl. Phys. Lett. 71, 140 (1997).Google Scholar
7. Kwon, C., Kim, K.-C., Robson, M.C., Lofland, S.E., Bhagat, S.M., Venkatesan, T., Ramesh, R. and Gomez, R.D., J.Mag. Magn. Mater. 172, 229 (1997).Google Scholar
8. Yeh, N-C., Vasquez, R.P., Beam, D.A., Fu, C-C., Huynh, J. and Beach, G., J. Phys.: Condens. Matter 9, 3713 (1997).Google Scholar
9. Wang, H.S. and Li, Qi, Appl. Phys. Lett. 73, 2360 (1998).Google Scholar
10. Nath, T.K., Rao, R.A., Lavric, D., Eom, C.B., Wu, L., and Tsui, F.. Appl. Phys. Lett. 74, 1615 (1999).Google Scholar
11. Thomas, K.A., Silva, P.S.I.P.N De, Cohen, L.F., Hossain, A., Rajeswari, M., Venkatesan, T., Hiskes, R., MacManus-Driscoll, J.L., J. Appl. Phys. 84, 3939 (1998).Google Scholar
12. Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., Sun, J.Z., Phys. Rev. B 54 R15629 (1996).Google Scholar
13. Mathur, N.D., Burnell, G., Isaac, S. P., Jackson, T. J., Teo, B.-S., MacManus-Driscoll, J. L., Cohen, L. F., Evetts, J. E. and Blamire, M. G., Nature 387, 226 (1997).Google Scholar
14. Millis, A.J., Goyal, A., Rajeswari, M., Ghosh, K., Shreekala, R., Greene, R.L., Ramesh, R. and Venkatesan, T., (to be published).Google Scholar
15. Rao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., Tsui, F., Appl. Phys. Lett. 73, 3294 (1998).Google Scholar
16. see, for example, Hubert, A. and Schaefer, R., “Magnetic Domains,” Springer, New York 1998.Google Scholar
17. Kittel, C., Phys. Rev. 70, 965 (1946).Google Scholar
18. In magnetic crystals, the spin-orbit interaction, which is at the microscopic origin of this resistivity anisotropy or anisotropic MR (AMR) effect, leads to a resistivity which depends not only on the orientation of magnetization and current and but also on the relation of these vectors to the crystal structure. For example, resistivity anisotropy of this type has recently been reported for transition metal epitaxial thin films.Google Scholar
19. Wu, Yan, Suzuki, Y., Yu, J., Rudiger, U., Kent, A.D., Nath, T.K., Eom, C.B., Appl. Phys. Lett. 75, 2295 (1999).Google Scholar
20. Brey, L., Cond. Matt. Preprint (Los Alamos) #9905209 (1999).Google Scholar