Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T13:20:51.976Z Has data issue: false hasContentIssue false

Lattice Damage in Ion-Implanted Compound Semiconductors and Its Effect on Electrical Activation

Published online by Cambridge University Press:  22 February 2011

T. E. Haynes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. Morton
Affiliation:
Department of Electrical and Computer Engineering, University of California, La Jolla, CA 92093
S. S. Lau
Affiliation:
Department of Electrical and Computer Engineering, University of California, La Jolla, CA 92093
Get access

Abstract

In recent years, a number of experimental observations have indicated that interactions between mobile point defects generated during ion implantation play an important role in the damage production in Ill-V compound semiconductors, and particularly GaAs. This paper reviews a set of such observations based on ion channeling measurements of the lattice damage in GaAs implanted with Si ions. Selected independent observations are also surveyed to illustrate the importance of point-defect interactions. Taken together, these show that at least two contributions to the lattice damage must often be considered: a “prompt” contribution attributed to direct-impact amorphization, and a “delayed” contribution attributed to point-defect clustering. New measurements are then described which show the different effects that these two damage components have on the electrical activation in annealed, Siimplanted GaAs. The aim is to indicate the potential to exploit the balance between these two damage contributions in order to improve the electrical performance and reproducibility of ion-implanted and annealed layers. Finally, the applicability of these concepts to other ion species and other compound semiconductors (GaP and InP) is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Haynes, T. E. and Holland, O. W., Appl. Phys. Lett. 59, 452 (1991).Google Scholar
[2] Haynes, T. E., Holland, O. W., and Desnica, U. V., Mat. Res. Soc. Symp. Proc. 240, 823 (1992).Google Scholar
[3] Morehead, F. F. Jr., and Crowder, B. L., Radiat. Eff. 6, 27 (1970).Google Scholar
[4] Gibbons, J. F., Proc. IEEE 60, 1062 (1972).Google Scholar
[5] Haynes, T. E. and Holland, O. W., Appl. Phys. Lett. 58, 62 (1991).Google Scholar
[6] Ahmed, N. A. G., Christodoulides, C. E., and Carter, G., Radiat. Eff. 52, 211 (1980).Google Scholar
[7] Carter, G., Nobes, M. J., and Tashlykov, I. S., Radiat. Eff. Lett. 85, 37 (1985).Google Scholar
[8] Chadderton, L. T., Radiat. Eff. 8, 77 (1971).Google Scholar
[9] Brown, L. M., Kelly, A., and Mayer, R. M., Phil. Mag. 19, 721 (1969).Google Scholar
[10] Wesch, W., Wendler, E., and Gärtner, K., Nucl. Instrum. Methods B 63, 52 (1992).Google Scholar
[11] Ehrhart, P., Karsten, K., and Pillukat, A., in Mat. Res. Soc. Symp. Proc. 279 (1993), in press.Google Scholar
[12] Corbel, C., Pierre, F., Saarinen, M., Hautojarvi, P., and Moser, P., Phys. Rev. B 45, 3386 (1992).Google Scholar
[13] Stievenard, D., Boddaert, X., Bourgoin, J. C., and Bardeleben, H. J. von, Phys. Rev. B 41, 5271 (1990).Google Scholar
[14] Cullis, A. G., Chew, N. G., Whitehouse, C. R., Jacobson, D. C., Poate, J. M., and Pearton, S. J., Appl. Phys. Lett. 55, 1211 (1989).Google Scholar
[15] Cullis, A. G., Polman, A., Smith, P. W., Jacobson, D. C., Poate, J. M., and Whitehouse, C. R., Nucl. Instrum. Methods B 62, 463 (1992).Google Scholar
[16] Bode, M., Ourmazd, A., Cunningham, J., and Hong, M., Phys. Rev. Lett. 67, 843 (1991).Google Scholar
[17] Haynes, T. E. and Holland, O. W., Nucl. Instrum. Methods B 59/60, 1028 (1991).Google Scholar
[18] Desnica, U. V., Wagner, J., Haynes, T. E., and Holland, O. W., J. Appl. Phys. 71, 2591 (1992).Google Scholar
[19] Jones, K. S., Bollong, M., Haynes, T. E., Deal, M. D., Allen, E. L., and Robinson, H. G., Mat. Res. Soc. Symp. Proc. 240, 785 (1992).Google Scholar
[20] Moore, F. G., Dietrich, H. B., Dobisz, E. A., and Holland, O. W., Appl. Phys. Lett. 57, 911 (1990).Google Scholar
[21] Pearton, S. J., Solid State Phenomena 1/2, 247 (1988).Google Scholar
[22] Moore, F. G. and Dietrich, H. B., Nucl. Instrum. Methods B 59/60, 978 (1991).Google Scholar
[23] Moore, F. G., Klein, P. B., and Dietrich, H. B., J. Appl. Phys. 72, 2692 (1992).Google Scholar
[24] Lee, S.-T., Chen, S., Braunstein, G., Ko, K.-Y., Ott, M. L., and Tan, T. Y., Appl. Phys. Lett. 57, 389 (1990).Google Scholar
[25] Chen, S., S.-T. Lee, Braunstein, G., Ko, K.-Y., Zheng, L. R., and Tan, T. Y., Jap. J. Appl. Phys. 29, L1950 (1990).Google Scholar
[26] Jones, K. S., Robinson, H. G., Haynes, T. E., Deal, M. D., Lee, C. C., and Allen, E. L., these proceedings.Google Scholar
[27] Bench, M. W., Robertson, I. M., and Kirk, M. A., Nucl. Instrum. Methods B 59/60, 372 (1991).Google Scholar
[28] Donnelly, J. P., Nucl. Instrum. Methods 182/183, 553 (1981).Google Scholar