Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T22:51:44.487Z Has data issue: false hasContentIssue false

Lateral Heat Spreading in Layered Samples

Published online by Cambridge University Press:  31 January 2011

Daniele Fournier
Affiliation:
daniele.fournier@espci.fr, UPMC, ESPCI 10 rue Vauquelin, PARIS, 75005, France, 33 1 40 79 46 02
Christian Fretigny
Affiliation:
christian.fretigny@espci.fr, CNRS, PARIS, France
Mikaël Busson
Affiliation:
Laboratoire LPEM, UPR A0005 CNRS / UPMC, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 5, France
Elika Saïdi
Affiliation:
Laboratoire LPEM, UPR A0005 CNRS / UPMC, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 5, France
Lionel Aigouy
Affiliation:
Laboratoire LPEM, UPR A0005 CNRS / UPMC, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 5, France
Jean Paul Roger
Affiliation:
Laboratoire LPEM, UPR A0005 CNRS / UPMC, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 5, France
Nicolas Bergeal
Affiliation:
Laboratoire LPEM, UPR A0005 CNRS / UPMC, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 5, France
Jérôme Lesueur
Affiliation:
Laboratoire LPEM, UPR A0005 CNRS / UPMC, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 5, France
Get access

Abstract

We describe two techniques dedicated to observe and study the heating of structured materials like micro and nanowires and multilayered compounds. The techniques are thermally modulated fluorescence and thermoreflectance. Thermally modulated fluorescence allows mapping the heating of devices with a sub-wavelength lateral resolution. Thermoreflectance allows deeper physical investigations and can be directly used to determine the thermal conductivity and diffusivity of layered structures. In particular, we will show that by thermally modulating a surface by a point-like source, we are able to determine such quantities for several geometries, taking into account the nature of the substrate (conductive or not) as well as the interface quality between the layers. The experimental results, measured on aluminum thin films of variable thickness and on vanadium dioxide layers are corroborated by an analytical model that analyzes both the amplitude and the phase of the lateral heat diffusion in the structure

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Samson, B. Aigouy, L. Latempa, R. Tessier, G. Aprili, M. Mortier, M. Lesueur, J. and Fournier, D. J. Appl. Phys. 102, 024305 (2007).Google Scholar
2 Rosencwaig, A. Opsal, J. Smith, W.L. and Willenborg, D.L. Appl. Phys. Lett. 46 (1985) 1013 Google Scholar
3 Inglehart, L.J. et al, Appl. Phys. Lett. 56 18 (1990)Google Scholar
4 Pottier, L. Appl. Phys. Lett. 64, 1618(1994)Google Scholar
5 Chance, R.R. Prock, A. Silbey, R. J. Chem Phys. 60, 2184 (1974).Google Scholar
6 Piermarini, J. Block, S. Barnett, J.D, Forman, R.A. J. Appl. Phys. 46, 2774 (1975).Google Scholar
7 Maurice, E. Monnom, G. Dussardier, B. Saïssy, A., Ostrowsky, D.B. Baxter, G.W. Appl. Opt. 34, 8019 (1995).Google Scholar
8 Aigouy, L. Wilde, Y. De, Mortier, M. Giérak, J. and Bourhis, E. Appl. Opt. 43(19), 38293837 (2004).Google Scholar
9 Layne, C.B. Lowdermilk, W.H. Weber, M.J. Phys. Rev. B 16, 10 (1977)Google Scholar
10 Saïdi, E., Samson, B. Aigouy, L. Volz, S. Löw, P., Bergaud, C. Mortier, M. Nanotechnology 20, 115703 (2009).Google Scholar
11 Samson, B. Aigouy, L. Löw, P., Bergaud, C. Kim, B. and Mortier, M. Appl. Phys. Lett. 92, 023101 (2008).Google Scholar
12 Shi, L. Majumdar, A. J. Heat Transfer 124, 329 (2002).Google Scholar
13 Arata, H.F. Gillot, F. Nojima, T. Fujii, T. Fujita, H. Lab Chip 8, 1436 (2008).Google Scholar
14 Mansanares, A. et al APL 64 46 (1994)Google Scholar
15See for instance A Rosencwaig in Photoacoustics and Photoacoustic Spectroscopy J. Wiley EditorsGoogle Scholar
16 Fretigny, C. et al, JAP 102, 116104 (2007)Google Scholar
17 Berglung, C. N. Guggenheim, H. J. Phys Rev 185, 1022 (1969)Google Scholar
18 Chen, S. et al, Sensors & Actuators A 115, 28 (2004)Google Scholar
19 Cavalleri, A. et al: Phys. Rev. Lett. 87, 237401 (2001)Google Scholar
20 Lee, J. S. et al: Appl. Phys. Lett. 91, 133509 (2007)Google Scholar
21 Lopez, R. et al, App. Phys. Lett. 85, 5191 (2004)Google Scholar
22 Qazilbash, M. M. et al: Science 318, 1750 (2007)Google Scholar
23 Leroux, Ch. et al: Phys Rev 57, 5111 (1998)Google Scholar
24 Verleur, H. Barker, A.S. and Berglung, C. N. Phys Rev 172, 172 (1968)Google Scholar