Skip to main content Accessibility help
×
Home

Lateral Heat Spreading in Layered Samples

  • Daniele Fournier (a1), Christian Fretigny (a2), Mikaël Busson (a3), Elika Saïdi (a3), Lionel Aigouy (a3), Jean Paul Roger (a3), Nicolas Bergeal (a3) and Jérôme Lesueur (a3)...

Abstract

We describe two techniques dedicated to observe and study the heating of structured materials like micro and nanowires and multilayered compounds. The techniques are thermally modulated fluorescence and thermoreflectance. Thermally modulated fluorescence allows mapping the heating of devices with a sub-wavelength lateral resolution. Thermoreflectance allows deeper physical investigations and can be directly used to determine the thermal conductivity and diffusivity of layered structures. In particular, we will show that by thermally modulating a surface by a point-like source, we are able to determine such quantities for several geometries, taking into account the nature of the substrate (conductive or not) as well as the interface quality between the layers. The experimental results, measured on aluminum thin films of variable thickness and on vanadium dioxide layers are corroborated by an analytical model that analyzes both the amplitude and the phase of the lateral heat diffusion in the structure

Copyright

References

Hide All
1 Samson, B. Aigouy, L. Latempa, R. Tessier, G. Aprili, M. Mortier, M. Lesueur, J. and Fournier, D. J. Appl. Phys. 102, 024305 (2007).
2 Rosencwaig, A. Opsal, J. Smith, W.L. and Willenborg, D.L. Appl. Phys. Lett. 46 (1985) 1013
3 Inglehart, L.J. et al, Appl. Phys. Lett. 56 18 (1990)
4 Pottier, L. Appl. Phys. Lett. 64, 1618(1994)
5 Chance, R.R. Prock, A. Silbey, R. J. Chem Phys. 60, 2184 (1974).
6 Piermarini, J. Block, S. Barnett, J.D, Forman, R.A. J. Appl. Phys. 46, 2774 (1975).
7 Maurice, E. Monnom, G. Dussardier, B. Saïssy, A., Ostrowsky, D.B. Baxter, G.W. Appl. Opt. 34, 8019 (1995).
8 Aigouy, L. Wilde, Y. De, Mortier, M. Giérak, J. and Bourhis, E. Appl. Opt. 43(19), 38293837 (2004).
9 Layne, C.B. Lowdermilk, W.H. Weber, M.J. Phys. Rev. B 16, 10 (1977)
10 Saïdi, E., Samson, B. Aigouy, L. Volz, S. Löw, P., Bergaud, C. Mortier, M. Nanotechnology 20, 115703 (2009).
11 Samson, B. Aigouy, L. Löw, P., Bergaud, C. Kim, B. and Mortier, M. Appl. Phys. Lett. 92, 023101 (2008).
12 Shi, L. Majumdar, A. J. Heat Transfer 124, 329 (2002).
13 Arata, H.F. Gillot, F. Nojima, T. Fujii, T. Fujita, H. Lab Chip 8, 1436 (2008).
14 Mansanares, A. et al APL 64 46 (1994)
15See for instance A Rosencwaig in Photoacoustics and Photoacoustic Spectroscopy J. Wiley Editors
16 Fretigny, C. et al, JAP 102, 116104 (2007)
17 Berglung, C. N. Guggenheim, H. J. Phys Rev 185, 1022 (1969)
18 Chen, S. et al, Sensors & Actuators A 115, 28 (2004)
19 Cavalleri, A. et al: Phys. Rev. Lett. 87, 237401 (2001)
20 Lee, J. S. et al: Appl. Phys. Lett. 91, 133509 (2007)
21 Lopez, R. et al, App. Phys. Lett. 85, 5191 (2004)
22 Qazilbash, M. M. et al: Science 318, 1750 (2007)
23 Leroux, Ch. et al: Phys Rev 57, 5111 (1998)
24 Verleur, H. Barker, A.S. and Berglung, C. N. Phys Rev 172, 172 (1968)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed