Skip to main content Accessibility help
×
Home

Laser Probes and Numerical Modeling as Process Diagnostics in Chemical Vapor Deposition

  • William G. Breiland (a1), Pauline Ho (a1), Michael E. Coltrin (a1), Robert J. Kee (a2) and Greg H. Evans (a2)...

Abstract

The chemical vapor deposition process consists of a chemicallyreacting flow in which the fluid mechanics and chemical kinetics are strongly coupled. Laser probes such as Raman spectroscopy and laserinduced fluorescence can be used to measure gas temperature fields and chemical species concentrations, but often the interpretation of such data is difficult because several interacting chemical and physical phenomena are occuring simultaneously. Detailed numerical modeling of the experinmental system under study provides valuable insights into these interactions and allows one to make useful comparisons between experiment and the model to gain a fundamental understanding of the CVD process. Examples of this approach are given for silicon deposition from silane and fluid mechanics diagnostics in a rotating disk CVD reactor.

Copyright

References

Hide All
1. Jensen, K. F., in Chemical Vapor Deposition, edited by McD. Robinsoul, van den Brekel, C. H. J., Cullen, G. W., Blocher, J. M., and Rai-Choudhury, P. (The Electrochemical Society, Softbound Proceedimigs Series, Pennington, NJ, 1984), p. 3.
2. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc. 131, 425 (1984).
3. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc. 133, 1206 (1986).
4. Breiland, W. G., Coltrin, M. E., and Ho, P., J. Appl. Phys. 59, 3267 (1986).
5. Breiland, W. G., Ho, P., and Coltrin, M. E., J. Appl. Phys. 60, 1505 (1986).
6. Newman, C. G., O'Neal, H. E., Ring, M. A., Leska, F., and Shipley, N., Int. J. Chlem. Kin. 11, 1167 (1979).
7. Bloem, J. and Claassen, W. A. P., J. Cryst. Growth 49, 435 (1980).
8. Richiman, D., Chang, Y. S., and Robinson, P. H., RCA Rev. 31, 613 (1970).
9. White, F.M., Viscous Fluid Flow, (McGraw Hill, Inc., New York, 1974), pp. 163184. (1974).
10. Olander, D.R., I. and E. C. Fund. 6,178 (1967).
11. Sugawara, K., J. Electrochem. Soc. 119, 1749 (1972).
12. Pollard, R., and Newman, J., J. Electrochem. Soc. 127, 745 (1980).
13. Hitchman, M.L. and Curtis, B.J., J. Crystal Growth 60, 43 (1982).
14. Jenkinson, J.P. and Pollard, R., J. Electrochem. Soc. 131, 2911 (1984).
15. Wang, C.A., Groves, S.H., Palmateer, S.C., Weyburne, D.W., and Brown, R.A., J. Crystal Growth 77, 136 (1986).
16. Chen, K. and Mortazavi, A.R., J. Crystal Growth 77, 199 (1986).
17. Evans, G.H. and Greif, R., ASME J. Heat Transfer 109, 928 (1987).
18. Evans, G. and Greif, R., Nuiner. Heat Transfer 12, 243 (1987).
19. Coltrin, M.E., Kee, R.J., Evans, G.H., and Miller, J.A., in Chemical Vapor Depositon, edited by Cullen, G.W. (The Electrochemical Society, Softbound Proceedings Series, Pennington, NJ, 1987), p. 33.

Laser Probes and Numerical Modeling as Process Diagnostics in Chemical Vapor Deposition

  • William G. Breiland (a1), Pauline Ho (a1), Michael E. Coltrin (a1), Robert J. Kee (a2) and Greg H. Evans (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed