Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T01:40:39.885Z Has data issue: false hasContentIssue false

Laser Direct-Write of Embryonic Stem Cells and Cells Encapsulated in Alginate Beads for Engineered Biological Constructs

Published online by Cambridge University Press:  25 April 2012

T.B. Phamduy
Affiliation:
Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180
A.D. Dias
Affiliation:
Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180
N. Abdul Raof
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Rd., Albany, NY 12203
N.R. Schiele
Affiliation:
Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180
D.T. Corr
Affiliation:
Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180
Y. Xie
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Rd., Albany, NY 12203
D.B. Chrisey
Affiliation:
Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180 Material Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180
Get access

Abstract

The ability to control the deposition of mouse embryonic stem cells (mESCs), and mESCs encapsulated in 200-μm diameter alginate microbeads, into customized patterns has recently been achieved using laser direct-write (LDW). Gelatin-based LDW was utilized to target and reproducibly deposit groups of cells directly onto receiving substrate surfaces. Live/dead staining for cell viability and immunocytochemistry for the pluripotency marker, Oct-4, indicated that transferred mESCs were viable following transfer, and maintained an important embryonic stem cell marker, respectively. LDW was further used to print mESCs encapsulated in hydrogel microbeads into customized patterns on a single-bead basis. Recent efforts have also achieved patterns of discrete co-cultures of mESCs and breast cancer cells in separate hydrogel microbeads. Altogether, we demonstrated the feasibility of LDW to print patterns of mESCs and mESC-microbeads for the biomimetic assembly of engineered cellular constructs and tissue models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lutolf, M.P. and Blau, H.M., Advanced Materials 21, 32553268 (2009).CrossRefGoogle Scholar
2. Lutolf, M.P., Gilbert, P.M., and Blau, H.M., Nature 462, (2009).CrossRefGoogle Scholar
3. Blau, H.M., Brazelton, T.R., and Weimann, J.M., Cell 105, 829841 (2001).CrossRefGoogle ScholarPubMed
4. Fisher, O.Z., Khademhosseini, A., Langer, R., and Peppas, N.A., Accounts of Chemical Research 43, 419428 (2010).CrossRefGoogle Scholar
5. Schiele, N.R., Corr, D.T., Huang, Y., Abdul Raof, N., Xie, Y., and Chrisey, D.B., Biofabrication 2, 032001 (2010).CrossRefGoogle Scholar
6. Maguire, T., Novik, E., Schloss, R., and Yarmush, M., Biotechnology (2005).Google Scholar
7. Banerjee, A., Arha, M., Choudhary, S., Ashton, R.S., Bhatia, S.R., Schaffer, D.V., and Kane, R.S., Biotechnology and Applied Biochemistry 30, 46954699 (2009).Google Scholar
8. Ma, H.L., Hung, S.C., Lin, S.Y., Chen, Y.L., and Lo, W.H., Journal of Biomedical Materials Research. Part A 64, 273–81 (2003).CrossRefGoogle Scholar
9. Hwang, Y.S., Cho, J., Tay, F., Heng, J.Y.Y., Ho, R., Kazarian, S.G., Williams, D.R., Boccaccini, A.R., Polak, J.M., and Mantalaris, A., Cell 30, 499507 (2009).Google Scholar
10. Abdul Raof, N., Raja, W.K., Castracane, J., and Xie, Y., Biomaterials 32, 4130–9 (2011).CrossRefGoogle Scholar
11. Mørch, Y., Donati, I., Strand, B.L., and Skjåk-Braek, G., Biomacromolecules 7, 1471–80 (2006).CrossRefGoogle Scholar
12. Wang, X., Wang, W., Guo, X., and Yu, X., Biotechnol. Prog. 22, 791800 (2006).CrossRefGoogle Scholar
13. Doraiswamy, A., Narayan, R.J., Harris, M.L., Qadri, S.B., Modi, R., Chrisey, D.B., Hill, C., and Carolina, N., Journal of Biomedical Materials Research Part A (2006).Google Scholar
14. Ringeisen, B.R., Wu, P.K., Kim, H., Piqué, A., Auyeung, R.Y.C., Young, D., Chrisey, D.B., and Krizman, D.B., Biotechnol. Prog. 181126, (2002).Google Scholar
15. Serra, P., Journal of Laser Micro/Nanoengineering 1, 236242 (2006).CrossRefGoogle Scholar
16. Serra, P., Colina, M., Fernández-Pradas, J.M., Sevilla, L., and Morenza, J.L., Applied Physics Letters 85, 1639 (2004).CrossRefGoogle Scholar
17. Duocastella, M., Fernández-Pradas, J.M., Domínguez, J., Serra, P., and Morenza, J.L., Applied Physics A 93, 941945 (2008).CrossRefGoogle Scholar
18. Ringeisen, B.R., Chrisey, D.B., Piqué, A., Young, H.D., Jones-Meehan, J., Modi, R., Bucaro, M., and Spargo, B.J., Biomaterials 23, 161–6 (2002).CrossRefGoogle Scholar
19. Schiele, N.R., Chrisey, D.B., and Corr, D.T., Tissue Engineering, Part C 17, 289–98 (2011).CrossRefGoogle Scholar
20. Hopp, B., Smausz, T., Kresz, N., Barna, N., Bor, Z., Kolozsvári, L., Chrisey, D.B., Szabó, A., and Nógrádi, A., Tissue Engineering 11, 1817–23 (2005).CrossRefGoogle Scholar
21. Abdul Raof, N., Schiele, N.R., Xie, Y., Chrisey, D.B., and Corr, D.T., Biomaterials 32, 1802–8 (2011).CrossRefGoogle Scholar
22. Burdick, J.A. and Vunjak-Novakovic, G., Tissue Engineering: Part A 15, 205–19 (2009).CrossRefGoogle Scholar
23. Chen, C.S., Journal of Cell Science 121, 32853292 (2008).CrossRefGoogle Scholar
24. Phamduy, T.B., Corr, D.T., and Chrisey, D.B., Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology 118 (2010).Google Scholar
25. Bratt-Leal, A.M., Carpenedo, R.L., and McDevitt, T.C., Biotechnology Progress 25, 4351 (2010).CrossRefGoogle Scholar
26. van Noort, D., Ong, S.M., Zhang, C., Zhang, S., Arooz, T., and Yu, H., Biotechnol. Prog. 25, 5260 (2009).CrossRefGoogle Scholar
27. Underhill, G.H. and Bhatia, S.N., Current Opinions in Chemical Biology 11, 357366 (2007).CrossRefGoogle Scholar
28. Dickinson, L.E., Kusuma, S., and Gerecht, S., Macromolecular Bioscience 11, 3649 (2011).CrossRefGoogle Scholar
29. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E., Biotechnology Progress 14, 356–63 (1998).CrossRefGoogle Scholar
30. Falconnet, D., Csucs, G., Grandin, H.M., and Textor, M., Biomaterials 27, 3044–63 (2006).CrossRefGoogle Scholar
31. Lee, L.H., Peerani, R., Ungrin, M., Joshi, C., Kumacheva, E., and Zandstra, P., Stem Cell Research 2, 155–62 (2009).CrossRefGoogle Scholar
32. Koch, L., Kuhn, S., Sorg, H., Gruene, M., Schlie, S., Gaebel, R., Polchow, B., Reimers, K., Stoelting, S., Ma, N., Vogt, P.M., Steinhoff, G., and Chichkov, B., Tissue Engineering: Part C, Methods 16, 847–54 (2010).CrossRefGoogle Scholar
33. Gruene, M., Pflaum, M., Deiwick, a, Koch, L., Schlie, S., Unger, C., Wilhelmi, M., Haverich, a, and Chichkov, B.N., Biofabrication 3, 015005 (2011).CrossRefGoogle Scholar
34. Gaebel, R., Ma, N., Liu, J., Guan, J., Koch, L., Klopsch, C., Gruene, M., Toelk, A., Wang, W., Mark, P., Wang, F., Chichkov, B., Li, W., and Steinhoff, G., Biomaterials 32, 9218–30 (2011).CrossRefGoogle Scholar
35. Gruene, M., Deiwick, A., Koch, L., Schlie, S., Unger, C., Hofmann, N., Bernemann, I., Glasmacher, B., and Chichkov, B., Cell 17, (2011).Google ScholarPubMed
36. Phamduy, T.B., Abdul Raof, N., Schiele, N.R., Yan, Z., Corr, D.T., Huang, Y., Xie, Y., and Chrisey, D.B., Biofabrication In review (2012).Google Scholar
37. Peirone, M., Ross, C.J., Hortelano, G., Brash, J.L., and Chang, P.L., Journal of Biomedical Materials Research 42, 587–96 (1998).3.0.CO;2-X>CrossRefGoogle Scholar
38. Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L., Nature 414, 105–11 (2001).CrossRefGoogle Scholar