Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-21T19:24:11.750Z Has data issue: false hasContentIssue false

Laser Crystallized Polysilicon Thin Films and Applications

Published online by Cambridge University Press:  15 February 2011

J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
P. Mei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Pulsed excimer-laser crystallization of amorphous silicon on non-crystalline substrates is an important processing technique for large-area polycrystalline silicon films and devices. Interest stems, in large part, from proposals to use polycrystalline silicon on glass in large-area electronic applications, such as flat-panel active matrix displays and two-dimensional imaging systems. The polycrystalline silicon is envisioned to increase the functionality and reduce costs over the current circuits that use amorphous silicon. Also, it is found that laser-crystallized polycrystalline silicon exhibits some interesting materials properties, such as a sharp peak in the average grain size with large lateral grain growth as a function of excimer laser energy density. The average grain size increases with increasing laser fluence and peaks on the order of several microns or two orders of magnitude larger than the film thickness. The grain size then decreases with further increases in laser fluence. This peak in grain size is accompanied by a similar peak in the Hall electron mobility. This is a significant relationship for devices since the grain structure has a substantial influence on electrical properties. But to the detriment of device parameters, this large lateral grain growth occurs over a very arrow range of laser fluences and is accompanied by a corresponding peak in the surface roughness of the films. These relationships between laser processing conditions, materials properties, and device parameters force a compromise between large grain size for high mobility and homogeneity of material for uniformity of device characteristics. A window does exist in process parameter space where good-quality devices with uniform characteristics have been obtained. In addition, these attributes have been achieved under conditions that yield good polycrystalline silicon and good amorphous silicon devices on the same wafer within a mm of one another, allowing for hybrid polycrystalline and amorphous silicon circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. I. See, for example, (a) Hack, M., Mei, P., Lujan, R., and Lewis, A. G., J. Non-Crystalline Solids, 164–166, 727 (1993) and (b) I-W. Wu, SID Digest, 19–22 (1995), and references contained therein.Google Scholar
2. Samashima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71, 435 (1986).Google Scholar
3. Ready, S. E., Boyce, J. B., Bachrach, R. Z., Johnson, R. I., Winer, K., Anderson, G. B., and Tsai, C. C., Mat. Res. Soc. Proc. 149, 345 (1989).Google Scholar
4. Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Electron Devices 36, 2868 (1989).Google Scholar
5. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Electron. Mat. 19, 241 (1990).Google Scholar
6. Shimizu, K., Sugiura, O., and Matsumura, M., Jpn. J. Appl. Phys., 29, L1775 (1990).Google Scholar
7. Johnson, R. I., Anderson, G. B., Boyce, J. B., Fork, D. K., Mei, P., Ready, S. E., and Chen, S., Mat. Res. Soc. Proc. 297, 533 (1993).Google Scholar
8. Boyce, J. B., Anderson, G. B., Fork, D. K., Johnson, R. I., Mei, P., Ready, S. E., Mat. Res. Soc. Proc. 321, 671 (1994).Google Scholar
9. Anderson, G. B., Boyce, J. B., Fork, D. K., Johnson, R. I., Mei, P., and Ready, S. E., Mat. Res. Soc. Proc., 343, 709 (1994).Google Scholar
10. Brotherton, S. D., McCulloch, D. J., Clegg, J. B., and Growers, J. P., IEEE Trans. Electron Devices 40, 407 (1993).Google Scholar
11. Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Ready, S. E., Fork, D. K., and Smith, D. L., Mat. Res. Soc. Proc. 297, 151 (1993).Google Scholar
12. Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Fork, D. K., and Ready, S. E., J. Appl. Phys. 76 (5), 3194 (1994).Google Scholar
13. Chen, S., Boyce, J. B., Wu, I-W., Chiang, A., Johnson, R. I., Anderson, G. B., and Ready, S. E., SID Proc. Of Active Matrix Liquid Crystal Displays Symp., p. 26, 1993.Google Scholar
14. See, for example, (a) Kuriyama, H., et al, Jpn. J. Appl. Phys. 31, 4550 (1992) and (b) I. Asai, N. Kato, M. Fuse, and T. Hamano, Jpn. J. Appl. Phys. 32, 474 (1993), and references contained therein.Google Scholar
15. Wu, I-W., Lewis, A. G., Huang, T-Y., and Chiang, A., Proc. of Society for Information Display 31, 311 (1990).Google Scholar
16. Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
17. Ready, S. E., Rob, J. H., Boyce, J. B., and Anderson, G. B., Mat. Res. Soc. Proc. 258, 111 (1992).Google Scholar
18. Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
19. Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
20. Fork, D. K., Anderson, G. B., Boyce, J. B., Johnson, R. I., and Mei, P., Appl. Phys. Lett., to be published (1995).Google Scholar
21. King, T-J. and Wu, I-W., unpublished results.Google Scholar