Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T03:52:53.534Z Has data issue: false hasContentIssue false

Large-scale Solution Processable Graphene-based Thin Film Devices

Published online by Cambridge University Press:  17 April 2012

Markus Pesonen
Affiliation:
Center for Functional Materials, Physics, Department of Natural Sciences, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Himadri S. Majumdar
Affiliation:
Center for Functional Materials, Physics, Department of Natural Sciences, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Jussi Kauppila
Affiliation:
Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland Graduate School of Materials Research
Jukka Lukkari
Affiliation:
Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
Ronald Österbacka
Affiliation:
Center for Functional Materials, Physics, Department of Natural Sciences, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Get access

Abstract

The purpose of this work is to fabricate large-scale solution processable graphene-based films from graphene oxide (GO) solution and to characterize the transport properties of these films. The graphene like film is produced by annealing of the GO film to form reduced graphene oxide (rGO) thin films. The conductive rGO thin films are useable as spacer layers in spin valves and as organic electrodes. Atomic Force Microscope (AFM) characterizations on the film thickness and morphology have been carried out and simple electrical transport studies performed on spin coated rGO thin films. We have fabricated rGO thin films ranging from few to tens of nanometers in thickness with conductivities in the order of 1-100 S/m. We also show that the morphology of the films play an important role in facilitating higher conductivities for rGO thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geim, A. K. and Novoselov, K. S., Nature Materials 6, 183 (2007).Google Scholar
2. Chen, J. -H., Jang, C., Xiao, S., Ishigami, M. and Fuhrer, M. S., Nature Nanotech. 3, 206 (2008).Google Scholar
3. Akturk, A. and Goldsman, N., J. of Applied Physics 103, 053702 (2008).Google Scholar
4. Lin, Y. -M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B., Avouris, P., Nano Lett. 9, 422 (2008).Google Scholar
5. Trauzettel, B., Bulaev, D. V., Loss, D. and Burkard, G., Nature Phys. 3, 192 (2007).Google Scholar
6. Huertas-Hernando, D., Guinea, F. and Brataas, A., Phys. Rev. B 74, 155426 (2006).Google Scholar
7. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S. and Kong, J., Nano Lett. 9, 30 (2009).Google Scholar
8. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. S., Science 324, 1312 (2009).Google Scholar
9. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. -S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. -J., Kim, K. S., Özyilmaz, B., Ahn, J. -H., Hong, B. H. and Iijima, S., Nature Nanotech. 5, 574 (2010).Google Scholar
10. Eda, G., Fanchini, G. and Chhowalla, M., Nature Nanotech. 3, 270 (2008).Google Scholar
11. Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M., Ohba, M., Carbon 42, 2929 (2004).Google Scholar
12. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M. and Kern, K., Nano Lett., 7, 11 (2007).Google Scholar
13. Suzuki, T. and Kaneko, K.. Carbon, 26, 743 (1988).Google Scholar
14. Xia, Y. and Ouyang, J., J. Mater. Chem., 21, 4927 (2011).Google Scholar
15. Stejskal, J. and Gilbert, R. G., Pure Appl. Chem., 74, 5, 857 (2002).Google Scholar
16. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K. A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E. and Chhowalla, M., Adv. Funct. Mater, 19, 1 (2009).Google Scholar