Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T20:09:20.568Z Has data issue: false hasContentIssue false

Large Cubic Nonlinear Optical Properties of Organic Semiconductor Superlattices

Published online by Cambridge University Press:  25 February 2011

Samson A. Jenekhe
Affiliation:
Department of Chemical Engineering, University of Rochester Rochester, New York 14627
Wen-Chang Chen
Affiliation:
Department of Chemical Engineering, University of Rochester Rochester, New York 14627
Saukwan Lo
Affiliation:
Honeywell Systems and Research Center Minneapolis, Minnesota 55418
Steven R. Flom
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

We have measured extremely large second hyperpolarizabilities〈γxxxx〉 in solutions of two recently prepared organic polymer semiconductor superlattices. These block copolymers are of alternating aromatic and quinoidal moieties and structurally differ by a side group substituent. The values observed are 1.6 × 10−29 esu for the parent copolymer (PBTBQ) and 3.7 × 10−30 esu for its acetoxy derivative (PBTABQ). The corresponding values of χ(3) are estimated to be 2.7 × 10−7 esu and 4.5 × 108 esu. The measurements, made by picosecond degenerate four wave mixing at 532 nm, showed that the dynamics of the larger χ(3) valued copolymer were faster than the 30 ps resolution of the instrument while the derivative exhibited a slower response. The large magnitude and rapid response of the cubic optical nonlinearities in these novel materials suggest theiT potential for further development and photonic device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prasad, P.N. and Ulrich, D.R., eds., Nonlinear Optical and Electroactive Polymers. (Plenum Press, New York, 1988).Google Scholar
2. Heeger, A.J., Orenstein, J. and Ulrich, D.R., eds., Nonlinear Optical Properties of Polymers, Materials Research Soc, Proc, vol 109, (Pittsburgh, PA, 1988).Google Scholar
3. Chemla, D.S. and Zyss, J., eds., Nonlinear Optical Properties of Organic Molecules and Crystals, vols. 1 and 2, (Academic Press, New York, 1987).Google Scholar
4. Williams, D.J., ed. Nonlinear Optical Properties of Organic and Polymeric Materials. ACS Symp. Series, no. 233, (Am. Chem. Soc, Washington, DC 1983).Google Scholar
5. Rao, D.N., Swiatkiewicz, J., Chopra, P., Ghosal, S.K. and Prasad, P.N., Appl. Phys. Lett., 48, 1187 (1986).Google Scholar
6. (a) Prasad, P.N., Swiatkiewicz, J. and Pfleger, J., Mol. Cryst. Liq. Cryst. 160, 53 (1988).Google Scholar
(b) Zhao, M.-T., Singh, B.P. and Prasad, P.N., J. Chem. Phys., 89, 5535 (1988).Google Scholar
7. Lo, S.K., Jenekhe, S.A. and Wellinghoff, S.T., Advances in Nonlinear Polymers and Inorganic Crystals. Liquid Crystals, and Laser Media, Proc. SPIE, 824, 162 (1987).CrossRefGoogle Scholar
8. Jenekhe, S.A., Lo, S.K. and Flom, S.R., Appl. Phys. Lett., 54, 2524 (1989).Google Scholar
9. Fann, W.–S., Benson, S., Madey, J.M.J., Etemad, S., Baker, G.L. and Kajzar, F., Phys. Rev. Lett., 62, 1492, (1989).Google Scholar
10. Ulrich, D.R., Mol. Cryst. Liq. Cryst., 160, 1 (1988).Google Scholar
11. Skotheim, T.A., ed., Handbook of Conducting Polymers, vols. 1 and 2, (Marcel Dekker, New York, 1986).Google Scholar
12. Heeger, A.J., ibid., vol.2, p. 729.Google Scholar
13. Simon, J. and Andre, J.–J., Molecular Semiconductors, (Springer, New York, 1984).Google Scholar
14. Jenekhe, S.A., Wellinghoff, S.T. and Reed, J.F., Mol. Crys. Liq. Cryst., 105, 175 (1984).Google Scholar
15. Jenekhe, S.A. and Chen, W.C., in: Mater. Res. Soc. Proceedings Vol. 173; (this volume).Google Scholar
16. Jenekhe, S.A., U.S. Patent 4,717,762, Jan. 5, 1988.Google Scholar
17. Jenekhe, S.A., U.S. Patent 4,758,634, July 5, 1988.Google Scholar
18. Singh, B.P., Prasad, P.N. and Karasz, F.E., Polymer, 29, 1940 (1988).Google Scholar
19. Jen, K.Y., Eckhardt, H., Jow, T.R., Shacklette, L.W. and Elsenbaumer, R.L., J. Chem. Soc. Chem. Commun., 1988, 215 (1988).Google Scholar
20. Jenekhe, S.A., Nature, 322, 345 (1986).Google Scholar
21. Jenekhe, S.A., Macromolecules, 19, 2663 (1986).Google Scholar
22. Kertesz, M., Lee, Y.S., Synthetic Metals, 28, C545 (1989).Google Scholar
23. Shen, Y. R., The Principles of Nonlinear Optics, (J. Wiley and Sons, New York, 1984) p. 247.Google Scholar
24. (a) Xuan, N.P., Ferrier, J. L., Gazengel, J., and Riviore, G., Opt. Commun. 51, 433 (1984)Google Scholar
(b) Levenson, M.D. and Bloembergen, N., J. Chem. Phys. 60, 1323 (1974).Google Scholar
25. Hellwarth, R.W., Prog. Quantum Electron. 5, 1 (1977).Google Scholar
26. (a) Etchepare, J., Grillon, G., Chamberet, J.P., Hamoniaux, G. and Orszag, A., Opt. Commun., 63, 329 (1987)Google Scholar
(b) Etchepare, J., Grillon, G., Hamoniaux, G., Antonetti, A. and Orszag, A., Revue Phys. Appl., 22, 1749 (1987)Google Scholar
(c) Etchepare, J., Grillon, G., Antonetti, A. and Orszag, A., Physica Scripta, T23, 191 (1988).Google Scholar
27. Deeg, F.W. and Fayer, M.D., J. Chem. Phys., 91, 2269 (1989).Google Scholar
28. Bondi, A., Physical Properties of Molecular Crystals. Liquids, and Glasses, (Wiley, New York, 1968), Chapt. 14.Google Scholar
29. Askadskii, A.A., Pure Appl. Chem., 146, 19 (1976).Google Scholar
30. Van Krevelen, D.W., Properties of Polymers: Their Estimation and Correlation with Chemical Structure, (Elsevier, New York, 1976), Chapt. 10.Google Scholar