Skip to main content Accessibility help

Large Area Flexible Electronics Fabrication by Selective Laser Sintering of Nanoparticles with a Scanning Mirror

  • Seung Hwan Ko (a1), Heng Pan (a2), Nico Hotz (a3) and Costas P. Grigoropoulos (a4)


The development of electric circuit fabrication on heat and chemically sensitive polymer substrates has attracted significant interest as a pathway to low-cost or large-area electronics. We demonstrated the large area, direct patterning of microelectronic structures by selective laser sintering of nanoparticles without using any conventional, very expensive vacuum or photoresist deposition steps. Surface monolayer protected gold nanoparticles suspended in organic solvent was spin coated on a glass or polymer substrate. Then low power continuous wave Ar-ion laser was irradiated as a local heat source to induce selective laser sintering of nanoparticles by a scanning mirror system. Metal nanoparticle possessed low melting temperature (<150°C) due to thermodynamic size effect, and high laser absorption due to surface plasmon mode. These make metal nanoparticles ideal for the low temperature, low laser energy selective laser processing, and further applicable for electronics fabrication on a heat sensitive polymer substrate. We extended our laser selective sintering of nanoparticles research to a large area (> 4” wafer) using scanning mirror to demonstrate current technology for industry level fabrication.



Hide All
1. Zschieschang, U., Klauk, H., Halik, M., Schmid, G., and Dehm, C., (2003) Adv. Mater. 15 1147–51.
2. Redinger, D., Molesa, S., Yin, S., Farschi, R., and Subramanian, V., (2004) IEEE trans. on electron devices 51 1978–83.
3. Loo, Y.L., Someya, T., Baldwin, K.W., Bao, Z., Ho, P., Dodabalapur, A., Katz, H.E., and Rogers, J.A., (2002) Proc. Natl. Acad. Sci. 99 10252–6.
4. Zaumseil, J., Someya, T., Bao, Z., Loo, Y.L., Cirelli, R., and Rogers, J.A., (2003) Appl. Phys. Lett. 82 793–5.
5. Blanchet, G.B., Loo, Y.L., Rogers, J.A., Gao, F. and Fincher, C.R., (2003) Appl. Phys. Lett. 82 463–5
6. Stutzmann, N., Friend, R.H., and Sirringhaus, H., (2003) Science 299 1881–84.
7. Ganier, F., Hajlaoui, R., Yasser, A., and Srivastava, P., (1994) Science 265 1684–86.
8. Bao, Z., Feng, Y., Dodavalapur, A., Raju, V.R., and Lovinger, A.J., (1997) Chem. Mater. 9 1299–301.
9. Ridley, B.A., Nivi, B., and Jacobson, J.M., (1999) Science 286 746–9.
10. Ko, S., Pan, H., Luscomb, C., Frèchet, J.M.J., Grigoropoulos, C.P., and Poulikakos, D., (2007) Nanotechnology 18, 345202.
11. Ko, S., Pan, H., Luscomb, C., Frèchet, J.M.J., Grigoropoulos, C.P., and Poulikakos, D., (2007) Appl. Phys. Lett. 90 141103(1–3).
12. Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T. S., and Sirringhaus, H., (2004) Nat. Mater 3 171–6.
13. Piqué, A., Chrisey, D.B., Fritz-Gerald, J.M., McGill, R.A., Auyeng, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duiganan, M., (2000) J. Mater.Res. 15 18721875.
14. Tan, B., Venkatakrishnan, K., and Tok, K.G., (2003) Appl. Surf. Sci. 207 365–71.
15. Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P., (2000) Science 290 2123–26.
16. Sirringhaus, H., and Shimoda, T., (2003) MRS bulletin 28 802–6.
17. Sele, C.W., Werne, T.V., Friend, R.H., and Sirringhaus, H., (2005) Adv. Mater. 8 9971001.
18. Perelaer, J., Klokkenburg, M., Hendriks, C.E., Schubert, U.S., (2006) Adv. Mater. 18 2101.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed