Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T04:26:59.711Z Has data issue: false hasContentIssue false

Kinetics of Epitaxial Layer Growth from Silane on (100) Silicon

Published online by Cambridge University Press:  15 February 2011

D. W. Greve*
Affiliation:
Department of Electrical and Computer EngineeringCarnegie Mellon University, Pittsburgh, PA 15213 USA
Get access

Abstract

Low temperature growth of silicon from silane is required in devices such as germanium- silicon HBTs and multiple quantum well structures for infrared detectors. Understanding the silicon growth kinetics is an important step in developing a complete model for incorporation of other species such as germanium, boron, and phosphorus. In this paper, we show that a wide range of recent data can be well explained by a model which includes the effect of hydrogen carrier gas and is based on a simple two- step reaction sequence for silane decomposition. Gas phase reactions and gas phase transport limits appear unimportant at least up to 1 Torr total pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kamins, T.I., Polycrystalline Silicon for Integrated Circuit Applications, p. 23 (Kluwer, Norwell, MA, 1988).Google Scholar
2. Coltrin, M.E., Kee, R.J., and Miller, J.A., J. Electrochem. Soc. 425 (1984),Google Scholar
3. Meyerson, B.S. and Jasinski, J.M., J. Appl. Phys. 61, 785 (1987).Google Scholar
4. Scott, B.A. and Estes, R.D., Appl. Phys. Lett. 55, 1005 (1989).Google Scholar
5. Gates, S.M., Greenlief, C.M., Kulkarni, S.K., and Sawin, H.H., J. Vac. Sci. Technol. A8, 2965 (1990).Google Scholar
6. Sinniah, K., Sherman, M.G., Lewis, L.B., Weinberg, W.H., Yates, J.T. Jr., and Janda, K.C., Phys. Rev. Lett. 62, 567 (1989).Google Scholar
7. Robbins, D.J., Glasper, J.L., Cullis, A.G., and Leong, W.Y., J. Appl. Phys. 69, 3729 (1991).Google Scholar
8. Garone, P.M., Sturm., J.C. Schwartz, P.V., Schwarz, S.A., and Wilkens, B.J., Appl. Phys. Lett. 56, 1275 (1990).Google Scholar
9. Jang, S.-M. and Reif, R., Appl. Phys. Lett. 60, 707 (1992),Google Scholar
10. Wise, M.L., Koehler, B.G., Gupta, P., Coon, P.A., and George, S.M., Surf. Sci. 258, 166 (1991).Google Scholar
11. Greve, D.W. and Racanelli, M., J. Electrochem. Soc. 138, 1744 (1991).Google Scholar
12. Gates, S.M. and Kulkarni, S.K., Appl. Phys. Lett. 58, 2963 (1991).Google Scholar
13. Buss, R.J., Ho, P., Brieland, W.G., and Coltrin, M.E., J. Appl. Phys. 63, 2808 (1988).Google Scholar
14. Dutartre, D., Warren, P., Berbezier, I., and Perret, P., Thin Solid Films, to be published.Google Scholar
15. Comfort, J. and Reif, R., J. Electrochem. Soc. 136, 2386 (1989).Google Scholar
16. Hirose, F., Suemitsu, M., and Miyamoto, N., Japan. J. Appl. Phys. 29, L1881 (1990).Google Scholar
17. Chadi, D.J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
18. Hamers, R.J., Köhler, U.K., and Demuth, J.E., Ultramicroscopy 31, 10 (1989).Google Scholar