Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T14:30:25.746Z Has data issue: false hasContentIssue false

Kinetics of Crystal Nucleation and Growth in Thin Films of Amorphous Te Alloys measured by Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

J. Kalb
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A. I. Physikalisches Institut der RWTH Aachen, 52056 Aachen, Germany
F. Spaepen
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
M. Wuttig
Affiliation:
I. Physikalisches Institut der RWTH Aachen, 52056 Aachen, Germany
Get access

Abstract

Both the crystal nucleation rate and the crystal growth velocity of sputtered amorphous Ag0.055In0.065Sb0.59Te0.29 and Ge4Sb1Te5 thin films used for optical data storage were determined as a function of temperature. Crystals were directly observed using ex-situ atomic force microscopy, and their change in size after each anneal was measured. Between 140°C and 185°C, these materials exhibited similar crystal growth characteristics, but differed in their crystal nucleation characteristics. These observations provide an explanation for the different re-crystallization mechanisms observed upon laser-induced crystallization of amorphous marks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Borg, H. J., Schijndel, M. van, Rijpers, J. C. N. et al., Jpn. J. Appl. Phys. 40, 1592 (2001).Google Scholar
2. Yamada, N., Ohno, E., Nishiuchi, K., et al., J. Appl. Phys. 69, 2849 (1991).Google Scholar
3. Coombs, J. H., Jongenelis, A. P. J. M., van Es-Spiekman, W., and Jacobs, B. A. J., J. Appl. Phys. 78, 4918 (1995).Google Scholar
4. Peng, C., Cheng, L., and Mansuripur, M., J. Appl. Phys. 82, 4183 (1997).Google Scholar
5. Sheila, A. C. and Schlesinger, T. E., J. Appl. Phys. 91, 2803 (2002).Google Scholar
6. Meinders, E. R., Borg, H. J., Lankhorst, M. H. R., Hellmig, J., and Mijiritskii, A. V., J. Appl. Phys. 91, 9794 (2002).Google Scholar
7. Kauzmann, W., Chem. Rev. 43, 219 (1948).Google Scholar
8. Spaepen, F., in Physics of Defects, edited by Balian, R., Kleman, M., and Poirier, J.-P. (Les Houches Lectures XXXV, North-Holland, Amsterdam, 1981), pp. 136174.Google Scholar
9. Spaepen, F. and Turnbull, D., Ann. Rev. Phys. Chem. 35, 241 (1984).Google Scholar
10. Njoroge, W. K. and Wuttig, M., J. Appl. Phys. 90, 3816 (2001).Google Scholar
11. Wamwangi, D., Njoroge, W. K., and Wuttig, M., Thin Solid Films 408, 310 (2002).Google Scholar
12. Kalb, J., Wen, C.-Y., Spaepen, F., and Wuttig, M., unpublished.Google Scholar
13. Leervad Pedersen, T.P., PhD thesis, RWTH Aachen, Germany (2003).Google Scholar
14. Christian, J. W., in The Theory of Transformations in Metals and Alloys (Pergamon Press, North-Holland, Amsterdam, 2nd edition, 1975), Chapter 11.Google Scholar
15. Kalb, J., Spaepen, F., Leervad Pedersen, T.P., and Wuttig, M., J. Appl. Phys. 94, 4908 (2003).Google Scholar
16. Kalb, J., Spaepen, F., and Wuttig, M., J. Appl. Phys. 93, 2389 (2003).Google Scholar