Skip to main content Accessibility help
×
Home

Kinetics of an Order-Disorder Transition in the Presence of Elastic Energies

  • K. R. Elder (a1), B. Morin (a1), M. Grant (a1) and R. C. Desai (a2)

Abstract

An approximate late time solution to the dynamics of phase separation for a nonconserved ordering order parameter (ø) coupled to a stable conserved field (c) is presented. In the Halperin Hohenberg(1) classification scheme this model is known as Model C with a symmetric coupling between nonconserved and conserved fields. The different time dependences of long (i.e., domain size lengths ∼ power law in time) and short wavelength (i.e., interfacial lengths ∼ exponential decay in time) fluctuations imply a simple relationship between the two fields. In essence ø controls the growth of the long wavelength fluctuations, and c modifies the interfacial profile. Asymptotically the dynamic structure factor (S ø(k,t)≡<Ø(k,t)Ø*(k,t)>) for the nonconserved field is shown to scale in the form S ø(k,t) = t dn f ø(kt n ), with n = 1/2. Similarly the structure factor for the conserved field (S c (k,t)) is shown to obey the scaling law S c (k,t) = t dn−1 f c (kt n ), with n = 1/2. Explicit expressions for the scaling functions f c (z) and fø(z) are presented for arbitrary dimension. These predictions can be tested through scattering experiments.

Copyright

References

Hide All
1 Hohenberg, P. C. and Halperin, B. I., Rev. Mod. Phys. 49, 435 (1977);
2 Gunton, J. D., Miguel, M. San and Sahni, P. in Phase Transitions and Critical Phenomena, Vol. 8, Domb, C. and Lebowitz, J. L., eds. (Academic Press, New York, 1983) pp. 267 and references therein.
3 aAllen, S. M. and Cahn, J. W., Acta Met. 23, 1 (1975); 3b2 4, 425 (1976); 3c27, 1085 (1979).
4 Kawasaki, K., Yalabik, M. C., and Gunton, J. D., Phys. Rev. A 17, 455 (1978).
5 Zia, R. K. P., Bausch, R., Janssen, H. K. and Dohm, V., Mod. Phys. Lett. B, 2, 961 (1988).
6 Mullins, W. W. and Vinals, J., Acta. Met., 37, 991 (1989).
7 a Ohta, T., Jasnow, D., and Kawasaki, K., Phys. Rev. Let. 49, 1223 (1982); 7bT. Ohta, Ann. Phys., 158, 31 (1984).
8 aOono, y. and Purl, S., Phys. Rev. Lett., 58, 836 (1987); sbPhys. Rev. A, 38, 1542 (1988); “ScMod. Phys. Lett. B 2, 861 (1988).
9 Gaulin, B. D., Spooner, S. and Morii, Y., Phys. Rev. Lett., 59, 668 (1987).
10 aGawlinski, E. T., J. Vinals and Gunton, J. D., Phys. Rev. B, 39, 7266, (1989); 10bR. Toral, A. Chakrabarti and J. D. Gunton, Phys. Rev. Lett., 60, 2311 (1988).
11 a Roland, C. and Grant, M., Phys. Rev. Lett., 60, 2657 (1988); 11bPhys. Rev. B, 39, 11971 (1989).
12 aRogers, T. M., Elder, K. R. and Desai, R. C., Phys. Rev. B, 37, 9638 (1988); 12bT. M. Rogers and R. C. Desai, Phys. Rev. B, 39 11956, (1989). 13 D. J. Bergman and B. I. Halperin, Phys. Rev. B, 13, 2145 (1976).
14 aSuzuki, M., Prog. Theor. Phys. 56, 77 (1976); 14b 56, 477 (1976); 14c j. Stat. Phys. 16, 11 (1977).

Kinetics of an Order-Disorder Transition in the Presence of Elastic Energies

  • K. R. Elder (a1), B. Morin (a1), M. Grant (a1) and R. C. Desai (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed