Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T17:07:10.129Z Has data issue: false hasContentIssue false

A Kinetic Monte Carlo Model for Ga Desorption from Chemisorbed and Physisorbed States During High Temperature GaAs MBE

Published online by Cambridge University Press:  10 February 2011

K. Mahalingam
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate Wright Patterson Air Force Base, OH 45433-7707, mahalik@ml.afrl.af.mil
D. L. Dorsey
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate Wright Patterson Air Force Base, OH 45433-7707
W. T. Taferner
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate Wright Patterson Air Force Base, OH 45433-7707
K. G. Eyink
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate Wright Patterson Air Force Base, OH 45433-7707
Get access

Abstract

A kinetic Monte Carlo model is developed to examine the influence of As/Ga flux ratio on the Ga desorption kinetics during molecular beam epitaxy of (100)-GaAs, based on data reported in desorption mass spectrometry experiments. A good match to experimental results is obtained when a mechanism involving desorption from a physisorbed state is included, in addition to desorption from a chemisorbed state. Analysis of the results revealed that the dependence of the Ga desorption energy on the As/Ga flux ratio, observed in growth experiments, is explained in terms of the component due to desorption from the physisorbed state. The Ga desorption energy associated with the chemisorbed state is independent of the As/Ga flux ratio. These predictions are similar to results reported in a recent study of In desorption during molecular beam epitaxy of InGaAs

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsang, T., in Semiconductors and Semimetals, Vol. 1.22 part A, edited by Williardson, R. K. and Beer, A. C. (Academic Press, New York, 1985), p. 95.Google Scholar
2. Levine, B. F., J. Appl. Phys. 74, R1 (1993).Google Scholar
3. Foxon, C. T., Heterojunctions and Semiconductor Superlattices, edited by Allen, G., Bastard, G., Boccara, N, Lanoo, M. and Voos, M. (Springer, Berlin, 1986), p. 27.Google Scholar
4. Evans, K. R., Stutz, C. E., Lorance, D. K. and Jones, R. L., J. Vac. Sci. Technol. B7, p. 259 (1989).Google Scholar
5. Evans, K. R., Stutz, C. E., Taylor, E. N. and Ehret, J. E., J. Vac. Sci. Technol. B9, p. 2428 (1991).Google Scholar
6. Reithmaier, J. P., Broom, R. F., and Meier, H. P., Appl. Phys. Lett. 61, p. 1222 (1992).Google Scholar
7. Mahalingam, K., Dorsey, D. L., Evans, K. R. and Venkatasubramainan, R., J. Cryst. Growth v175/176, p. 211 (1997).Google Scholar
8. Mahalingam, K., Dorsey, D. L., Evans, K. R. and Venkat, Rama, Appl. Phys. Lett. 70, p. 3143 (1997).Google Scholar
9. Mahalingam, K., Dorsey, D. L., Evans, K. R. and Venkat, Rama, J. Vac. Sci. Technol. B18, p. 2528 (1997).Google Scholar
10. Foumier, F., Metzger, R. A., Doolittle, A., Brown, A. S., Carter-Coman, C., Jokerst, N. M., Bicknell-Tassius, R., J. Cryst. Growth 175/176, p. 203 (1997).Google Scholar
11. Madhukar, A. and Ghasias, S. V., CRC Crit. Rev. Sol. Stat. Mat. Sci. 13, p. 143 (1987).Google Scholar
12. Singh, J. and Bajaj, K. K., J. Vac. Sci. Technol. B3, p. 520 (1985).Google Scholar
13. Singh, J. and Bajaj, K. K., Superlattices and Microstructures 2, p. 185 (1986).Google Scholar
14. Kaspi, R. and Barnett, S. A., J. Cryst. Growth 241, p. 146 (1991).Google Scholar
15. Taferner, W. T., Mahalingam, K., Dorsey, D. L. and Eyink, K. G., J. Cryst. Growth, in press.Google Scholar
16. Harrison, W. A., Electronic Structure and Properties of Solids (Dover, New York, 1989), p. 572.Google Scholar