Skip to main content Accessibility help
×
Home

Kinetic Model of Thermal Donor Evolution

  • K. F. Kelton (a1) and R. Falster (a2)

Abstract

Kinetic aspects of thermal donor (TD) formation in Czochralski silicon are shown to be consistent with the evolution of small oxygen clusters, as described within the classical theory of nucleation. Predictions for TD generation and interstitial oxygen loss are presented. Favorable agreement with experimental data requires that the rate constants describing cluster evolution be increased over those expected for a oliffusion-limited flux based on a normal diffusion coefficient for oxygen in silicon. This may signal an anomalously high diffusion rate for temperatures less than 500°C, as has been suggested by others. However, it may instead signal an enhanced concentration of free oxygen near clusters smaller than the critical size for nucleation. This is expected when the interfacial attachment rates become comparable with the rates at which oxygen atoms arrive in the vicinity of the sub-critical clusters. The link between thermal donor generation and oxygen precipitation processes demonstrated here provides a consistent framework for better understanding and controlling oxygen precipitation in silicon. Further, the kinetic TD generation and oxygen loss data provide a new window into the dynamical processes for small clusters, which underlie all nucleation phenomena.

Copyright

References

Hide All
McQuaid, S. A., Binns, M. J., Londos, C. A., Tucker, J. H., Brown, A. R., and Newman, R. C., J. Appl. Phys., 77, 1427 (1995).
Kelton, K. F., “Crystal Nucleatíon in Liquids and Glasses,” in Solid State Physics, 45, (Ehrenreich, H. and Turnbull, D.), Academic Press (1991).
3. Oxtoby, D., J. Chem. Phys, 80, 1639 (1984).
4. Kelton, K. F. and Greer, A. L., Phys. Rev. B38, 10089 (1988).
5. Kelton, K. F., Greer, A. L. and Thompson, C. V., J. Chem. Phys., 79, 6261 (1983).
6. Baghadi, A., Buliis, W. M., Croarkin, M. C., Yue-zhen, L., Scace, R. I., Series, R. W.. Stallhofer, P.. and Watanabe, M., J. Electrochem. Soc. 36, 2015 (1989).
7. Claybourn, M. and Newman, R. C., Appl. Phys. Lett., 51. 2197 (1987).
8. Newman, R. (private communication).
9. Russell, K. G., Acta Metall, 16, 761 (1968).

Kinetic Model of Thermal Donor Evolution

  • K. F. Kelton (a1) and R. Falster (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed