Skip to main content Accessibility help
×
Home

Kinetic Effects and Mechanisms Limiting Substitutional Solubility in the Formation of Supersaturated Alloys by Pulsed Laser Annealing*

  • C. W. White (a1), B. R. Appleton (a1), B. Stritzker (a1), D. M. Zeiner (a1) and S. R. Wilson (a1)...

Abstract

Pulsed laser annealing of silicon implanted by Group (III, V) dopants leads to the formation of supersaturated alloys by nonequilibrium processes occurring in the interfacial region during liquid phase epitaxial regrowth. The distribution coefficient from the melt (k') and the maximum dopant substitutional solubility (CS max) are far greater than equilibrium values and both are functions of growth velocity. Substitutional solubility is limited by lattice strain and by constitutional supercooling at the interface during regrowth. Values for CS max obtained at different growth velocities are compared with predictions of thermodynamic limits for solute trapping.

Copyright

Footnotes

Hide All
**

Institut fur Festkoperforschung, KFA, Julich, Julich, Germany.

+

Motorola, Inc., Phoenix, Arizona.

*

Research sponsored by the Division of Materials Sciences, U. S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation.

Footnotes

References

Hide All
1. See for example, White, C. W., Narayan, J. and Young, R. T., Science 204, 461 (1979) and references therein.
2. Laser-Solid Interactions and Laser Processing–1978 (ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M., AIP Conference Proceedings No. 50, American Institute of Physics, New York, 1979).
3. Laser and Electron Beam Processing of Materials (ed. by White, C. W. and Peercy, P. S., Academic Press, New York, 1980).
4. Appleton, B. R., Larson, B. C., White, C. W., Narayan, J., Wilson, S. R. and Pronko, P. P., Ref. 2, p. 291.
5. White, C. W., Pronko, P. P., Wilson, S. R., Appleton, B. R., Narayan, J. and Young, R. T., J. Appl. Phys. 50, 3261 (1979).
6. White, C. W., Wilson, S. R., Appleton, B. R. and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).
7. Auston, D. H., Golovchenko, J. A., Simons, A. L., Slusher, R. E., Smith, P. R., Surko, C. M. and Venkatesan, T. N. C., Ref. 2, p. 11.
8. Wang, J. C., Wood, R. F. and Pronko, P. P., Appl. Phys. Lett. 33, 455 (1978).
9. Wood, R. F., Wang, J. C., Giles, G. E. and Kirkpatrick, J. R., Ref. 3, p. 37.
10. Cahn, J. W., Coriell, S. R. and Boettinger, W. J., Ref. 3, p. 89.
11. Trumbore, F., Bell System Tech. Journal 39, 205 (1960).
12. Baker, J. C. and Cahn, J. W., Acta. Metall. 17, 575 (1969).
13. Jackson, K. A., Gilmer, G. H. and Leamy, H. J., Ref. 3, p. 104.
14. White, C. W., Narayan, J. and Young, R. T., Ref. 2, p. 275.
15. Larson, B. C., White, C. W. and Appleton, B. R., Appl. Phys. Lett. 32, 801 (1978).
16. White, C. W., Wilson, S. R., Appleton, B. R. and Narayan, J., Ref. 3, p. 124.
17. See for example, Jackson, K. A. in Treatise on Solid State Chemistry, Vol. 5 (ed. by Hannay, N. B., Plenum Press, New York, 1975) Chap. 5.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed