Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T04:58:22.221Z Has data issue: false hasContentIssue false

Irradiation effects of synthetic coffinite (USiO4) studied by in-situ TEM

Published online by Cambridge University Press:  15 February 2011

J.M. Zhang
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109
F. Y. Lu
Affiliation:
Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
V. Pointeau
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109
F. X. Zhang
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109
M. Lang
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109
C. Poinssot
Affiliation:
Nuclear Energy Division, Department of Radiochemistry and Processes, Commissariat a l'Energie Atomique – CEA Marcoule, 30200 Bagnols-Sur-Ceze Cedex
J. Lian
Affiliation:
Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
R. C. Ewing*
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109
*
*Corresponding author. Emails: rodewing@umich.edu
Get access

Abstract

Coffinite (USiO4, I41/amd, Z=4) is the major alteration phase of uraninite, UO2+x, under reducing conditions in natural uranium deposits. Thus, it is important to understand the radiation response of coffinite because it is an expected alteration product of the UO2 in spent nuclear fuel. In the present study, we conducted in-situ transmission electron microscopy (TEM) investigation of synthetic coffinite under 1 MeV-Kr2+ ion beam irradiation. The radiation-induced crystalline-to-amorphous transformation was observed in the synthetic nanocrystalline USiO4, with a critical dose of ∼ 0.27 displacements per atoms (dpa) for which full amorphization occurred at room temperature. The critical dose increases as rising irradiation temperature, and above the critical temperature (Tc), ∼ 608 K, coffinite cannot be amorphized. These results are compared with previous studies on the isostructural zircon (ZrSiO4, Tc=1000K) and thorite (ThSiO4, Tc>1100K), which indicates that synthetic coffinite is more stable to ion beam irradiation at elevated temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Janeczek, J. and Ewing, R. C., Mat. Res. Soc. Symp. Proc., 257, 497504 (1992).Google Scholar
2 Janeczek, J. and Ewing, R. C., J. Nucl. Mat., 190, 157173 (1992)Google Scholar
3 Janeczek, J., Ewing, R. C., Oversby, V. M., and Werme, L. O., J. Nucl. Mater., 238, 121130 (1996).Google Scholar
4 Janeczek, J. and Ewing, R. C., Geochim. Cosmochim. Acta. 59, 19171931 (1995).Google Scholar
5 Fayek, M., Harisson, T. M., Ewing, R. C., Grove, M., and Coath, C. D., Chem. Geol. 185, 205225 (2002).Google Scholar
6 Janeczek, J. and Ewing, R. C., J. Nucl. Mater. 190, 157173 (1992).Google Scholar
7 Bros, R., Hidaka, H., and Ohnuki, T., Appl. Geochem. 18, 18071824 (2003).Google Scholar
8 Deditius, A. P., Utsunomiya, S., and Ewing, R. C., Chem. Geol., 251, 3349 (2008).Google Scholar
9 Deditius, A. P., Utsunomiya, S., Wall, M. A., Pointeau, V., and Ewing, R. C., Am. Mineral., (in press).Google Scholar
10 Taylor, M. and Gebert, E., Am. Mineral. 43, 243 (1958).Google Scholar
11 Janeczek, J. and Ewing, R.C., J. Nucl. Mater. 190, 128132 (1992).Google Scholar
12 Robinson, K., Gibbs, G. V., and Ribbe, P.H., Am. Mineral. 56, 782 (1971).Google Scholar
13 Meldrum, A., Zinkle, S. J., Boatner, L. A., and Ewing, R. C., Phys. Rev. B 59, 3981 (1999).Google Scholar
14 Meldrum, A., Boatner, L. A., and Ewing, R. C., Mineralogical Magazine 64, 185 (2000).Google Scholar
15 Meldrum, A., Zinkle, S.J., Boatner, L.A. and Ewing, R.C., Nature 395, 5658 (1998).Google Scholar
16 Pointeau, V., Deditius, A. P., Miserque, F., Renock, D., Becker, U., Zhang, J., Clavier, N., Dacheux, N., Poinssot, C., and Ewing, R.C., J. Nucl. Mater. (submitted)Google Scholar
17 Zhang, F. X., Pointeau, V., Shuller, L. C., Reaman, D. M., Lang, M., Liu, Z. X., Hu, J. Z., Panero, W. R., Becker, U., Poinssot, C., and Ewing, R. C., Am. Mineral., (in press).Google Scholar
18 Lian, J., Zhang, J. M., Pointeau, V., Zhang, F. X., Lang, M., Lu, F. Y., Poinssot, C., and Ewing, R.C., J. Nucl. Mater. (submitted)Google Scholar