Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T18:38:50.284Z Has data issue: false hasContentIssue false

Irradiation Effects in Space Solar Cells Made of Multiple Absorbers

Published online by Cambridge University Press:  21 March 2011

M. J. Romero
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden,CO 80401-3393303-384-6653, 303-384-6604mromero@nrel.gov
R. J. Walters
Affiliation:
Naval Research Laboratory (NRL), Code 6615, 4555 Overlook Ave., S.W., Washington DC 20375
M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden,CO 80401-3393303-384-6653, 303-384-6604mromero@nrel.gov
S. R. Messenger
Affiliation:
Naval Research Laboratory (NRL), Code 6615, 4555 Overlook Ave., S.W., Washington DC 20375
G. P. Summers
Affiliation:
Naval Research Laboratory (NRL), Code 6615, 4555 Overlook Ave., S.W., Washington DC 20375
Get access

Abstract

Solar cells made of multiple absorbers are a commonly used approach for improving efficiency due to their extended range of spectral sensitivity. Indeed, efficiencies nearing the theoretical maximum have been achieved with a triple-junction device made of In0.51Ga0.49P (InGaP2), GaAs, and Ge solar cells connected in series. For extraterrestrial applications, there is the added requirement of radiation tolerance. The main challenge for space power-generation is therefore the development of highly efficient and radiation-tolerant devices. We have investigated several aspects of the radiation response of solar cells made of multiple absorbers, such as multijunction devices and quantum-well solar cells. Novel possibilities such as quantumdot solar cells and ordered-disordered heterostructures are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kurtz, S.R., Myers, D., and Olson, J.M., “Projected performance of three- and four-junction devices using GaAs and GaInP,” in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, pp. 875–878 (1997).Google Scholar
2. Olson, J.M., Geisz, J.F., Kurtz, S.R., and Norman, A.G., “1-eV semiconductors for multijunction solar cells” at this conference.Google Scholar
3. Serdiukova, I., Monier, C., Vilela, M.F., and Freundlich, A., Appl. Phys. Lett. 74, 2812 (1999).Google Scholar
4. Romero, M.J., Araujo, D., Garcia, R., Walters, R.J., Summers, G.P., and Messenger, S.R., Appl. Phys. Lett. 74, 2684 (1999).Google Scholar
5. Bett, A.W., Adelhelm, R., Agert, C., Beckert, R., Dimroth, F., and Schubert, U., Solar Energy Materials and Solar Cells 66, 541 (2001).Google Scholar
6. Molina, S.I., Pacheco, F.J., Araujo, D., García, R., Sacedón, A., Calleja, E., Yang, Z., and Kidd, P., Appl. Phys. Lett. 65, 2460 (1994)Google Scholar
7. Lazzarini, L., Ferrari, C., Gennari, S., Bosacchi, A., Franchi, S., Berti, M., Drigo, A.V., Romanato, F., and Salviati, G., Inst. Phys. Conf. Ser. 157, 149 (1997)Google Scholar
8. The displacement damage dose (Dd) is given by the product of the particle fluence, which is expressed in cm−2, and the calculated non-ionizing energy loss (NIEL, in MeVcm2g−1).Google Scholar
9. Tada, H.Y., Carter, J.R., Anspaugh, B.E., and Downing, R.G., The Solar Cell Radiation Handbook, JPL Publication 82–69 (1982).Google Scholar
10. Walters, R.J., Romero, M.J., Araujo, D., García, R., Messenger, S.R., and Summers, G.P., J. Appl. Phys. 86, 3584 (1999).Google Scholar
11. Romero, M.J., Olson, J.M., and Al-Jassim, M.M., “Light-biasing electron-beam-inducedcurrent for multijunction solar cells,” in Proceedings of the NCPV Program Review Meeting, pp. 289–290 (2001).Google Scholar
12. Donolato, C., Optik 52, 19 (1978/1979).Google Scholar
13. Sinha, K., Mascharenhas, A., Alonso, R.G., Horner, G.S., Bertness, K.A., Kurtz, S.R., and Olson, J.M., Solid State Communications 89, 843 (1994).Google Scholar
14. Murata, H., Ho, I.H., Stringfellow, G.B., and Mullin, J.B., J. Crys. Growth 170, 219 (1997).Google Scholar
15. Chun, Y.S., Murata, H., Stringfellow, G.B., and Mullin, J.B., J. Crys. Growth 170, 263 (1997).Google Scholar
16. Chu, Y.S., Lee, S.H., Ho, I.H., and Stringfellow, G.B., J. Crys. Growth 174, 585 (1997).Google Scholar
17. Wei, S.H., and Zunger, A., Appl. Phys. Lett. 56, 662 (1990).Google Scholar
18. Walters, R.J., Summers, G.P., Messenger, S.R., Romero, M.J., Al-Jassim, M.M., Garcia, R., Araujo, D., Freundlich, A., Newman, F., and Vilela, M.F., J. Appl. Phys. 90, 2840 (2001).Google Scholar
19. Anderson, N.G., J. Appl. Phys. 78, 1850 (1995).Google Scholar
20. Tang, Y., Rich, D.H., Moy, A.M., and Cheng, K.Y., Appl. Phys. Lett. 72, 55 (1998).Google Scholar