Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-06T14:05:06.698Z Has data issue: false hasContentIssue false

Irradiation Defect Structures In YBa2Cu3O7-xand their Correlation with Superconducting Properties

Published online by Cambridge University Press:  26 February 2011

Marquis A. Kirk*
Affiliation:
Materials Science Division, Argonne National Laboratory,Argonne, IL 60439
Get access

Abstract

We review our work on irradiation effects in single crystal YBa2Cu3O7-x. Transmission electron microscopy has been employed to study the defect microstructures produced by irradiations with fast neutrons, MeV ions (Kr, Ne and p), and electrons. The atomic structure within defect cascades was investigated using 50 keV Kr and Xe ion irradiations to low doses. Evidence is shown for an amorphous structure with some incoherent recrystallization within individual cascades. Correlation with enhancements in critical current density produced by neutron irradiations suggest that this cascade structure effectively pins magnetic flux lines.

At sufficiently high fluences of fast neutrons or MeV Kr and Ne ions, a cellular microstructure is found. This structure consists of cells or microcrystallites of good crystalline and superconducting material (in the case of neutron irradiation), with cell walls of amorphous material. Full amorphization proceeds with the growth of cell wall volume. The formation of this microstructure coincides with a decrease in critical transport current, but is not observed by magnetization measurements.

Increases in critical current density under proton irradiation, comparable to those produced by neutron irradiation, have been reported. The defect structure produced by proton irradiations is examined here and found to differ from that of neutron irradiations. The structure is suggested to be consistent with the clustering of mobile defects (at 300 K) produced by the lower energy recoils which dominate in proton irradiations. In both the proton and fast neutron irradiations, to fluences producing the maximum enhancements in critical current densities, the degradations in critical temperature are not severe, <10 K.

Our most recent measurements of changes in critical temperature and current density, and defect microstructure following electron irradiations will be described

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sweedler, A. R., Snead, C. L. Jr., and Cox, D. E., in Metallurgy of Superconducting Materials, edited by Luhman, T. and Dew-Hughes, D. (Academic Press, New York, 1979), p. 349.Google Scholar
2. Weber, H. W., Kerntechnik 53, 189 (1989.Google Scholar
3. Seitz, F. and Koehler, J. S., in Solid State Physics 2, edited by Seitz, F. and Tumbull, D. (Academic Press Inc., New York, 1956), p. 305.Google Scholar
4. Biersack, J. P. and Haggmark, L. G., Nuclear Instruments and Methods, 174, 257 (1980).Google Scholar
5. Greenwood, L. R., in Reactor Dosimetry: Methods. Applications. and Standardization, edited by Farrar, H. IV and Lippincott, E. P. (ASTM STP 1001, Philadelphia, 1989), p. 598.Google Scholar
6. Weber, H. W., Böck, H., Unfried, E., and Greenwood, L. R., J. Nucl. Mater. 137, 236 (1986).Google Scholar
7. White, A. E., Short, K. T., Jacobson, D. C., Poate, J. M., Dynes, R. C., ankiewich, P. M., Skocpol, W. J., Howard, R. E., Anzlowar, M., Baldwin, K. W., Levi, A. J. F., Kwo, J. R., Hsieh, T., and Hong, M., Phys. Rev. B, 37, 3755 (1988).Google Scholar
8. Clark, G. J., Marwick, A. D., Legoues, F., Laibowitz, R. B., Koch, R. and Madakson, P., Nuclear Instruments and Methods, B32, 405 (1988).CrossRefGoogle Scholar
9. Kirk, M. A., Frischherz, M. C., Liu, J. Z., Funk, L. L., Thompson, L. J., Ryan, E. A., Ockers, S. T., and Weber, H. W., Physica C, 162–164, 532 (1989).Google Scholar
10. Kirk, M. A., Baker, M. C., Liu, J. Z., Lam, D. J. and Weber, H. W., Mat. Res. Soc. Symp. Proc. 99, 209 (1988).Google Scholar
11. Kirk, M. A., Frischherz, M. C., Liu, J. Z., Greenwood, L. R., and Weber, H. W., Phil. Mag Lett., 62, 41 (1990).CrossRefGoogle Scholar
12. Schindler, W., Roas, B., Saemann-lschenko, G., Schultz, L. and Gerstenberg, H., Physica C 169, 117 (1990).Google Scholar
13. Sauerzopf, F. M., Wiesinger, H. P., Kritscha, W., Weber, H. W., Crabtree, G. W., and Liu, J. Z., to be published in Phys. Rev. B.Google Scholar
14. Frischherz, M. C., Kirk, M. A., Liu, J. Z., Zhang, J. P. and Weber, H. W., to be published in the Proceedings of the ASTM Symposium on “Effects of Radiation on Materials”, June 1990, Nashville, TN.Google Scholar
15. Kirk, M. A., Frischherz, M. C., Zhang, J. P., Liu, J. Z. and Weber, H. W., to be published.Google Scholar
16. Diaz de la Rubia, T., Averback, R. S., and Hsieh, H., J. Mater. Res., 4, 579 (1989).CrossRefGoogle Scholar
17. Civale, L., Marwick, A. D., McElfresh, M. W., Worthington, T. K., Malozemoff, A. P., Holtzberg, F. H., Thompson, J. R., and Kirk, M. A., Phys Rev. Lett.,65, 1164 (1990).Google Scholar
18. Kirk, M. A., Saxon, G. and Marwick, A. D., to be published.Google Scholar
19. Giapintzakis, J., Ginsberg, D. M. and Kirk, M. A., to be published.Google Scholar
20. Kirk, M. A., Wheeler, R. and Ruault, M.-O., to be published.Google Scholar