Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T00:13:40.398Z Has data issue: false hasContentIssue false

Iron Oxide Composite Nanoparticles and Sensing Properties

Published online by Cambridge University Press:  01 February 2011

Lingyan Wang
Affiliation:
lwang2@binghamton.edu, United States
Xiajing Shi
Affiliation:
cjzhong@binghamton.edu, United States
Sakienah Mahs
Affiliation:
cjzhong@binghamton.edu, United States
Jeongku Choi
Affiliation:
cjzhong@binghamton.edu, United States
Karan Sarup
Affiliation:
cjzhong@binghamton.edu, United States
Guannan Roger Wang
Affiliation:
cjzhong@binghamton.edu, United States
Jin Luo
Affiliation:
jluo@binghamton.edu, United States
Susan Lu
Affiliation:
cjzhong@binghamton.edu, United States
Chuan-Jian Zhong
Affiliation:
cjzhong@binghamton.edu, United States
Get access

Abstract

This paper reports findings of an investigation of the synthesis of monolayer-capped iron oxide and core (iron oxide)-shell (gold) nanocomposite and their assembly towards thin films as sensing materials. Pre-synthesized and size-defined iron oxide nanoparticles were used as seeding materials for the reduction of gold precursors, which was shown to be effective for coating the iron oxide cores with gold shells (Fe oxide@Au). The unique aspect of our synthesis is the formation of Fe oxide@Au core-shell nanoparticles with controllable surface properties. By controlling the reaction temperatures and manipulating the capping agent properties and solution compositions, the size, shape, composition, and monodispersity can be tailored. The core-shell nanoparticles were shown to form molecularly-mediated thin film assemblies using molecular mediators. The sensing properties of the nanostructures on piezoelectric devices were examined for the detection of volatile organic compounds. The preliminary results have provided important insights into the design of core-shell nanocomposites as sensing materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Connor, C. J., Seip, C. T., Carpenter, E. E., Li, S. C., John, V. T., Nanostruct. Mater. 12, 65 (1999).Google Scholar
2. Hyeon, T., Lee, S. S., Park, J., Chung, Y., Na, H. B., J. Am. Chem. Soc. 123, 12798 (2001).Google Scholar
3. (a) Sun, S. H., Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002). (b) S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. X. Li, J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
4. Fried, T., Shemer, G., Markovich, G., Adv. Mater. 13, 1158 (2001).Google Scholar
5. Carpenter, E. E., Sangregorio, C., O'Connor, C. J., IEEE Trans. Magn. 35, 3496 (1999).Google Scholar
6. Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E. E., O'Connor, C. J., J. Solid State Chem. 159, 26 (2001).Google Scholar
7. Cho, S.-J., Idrobo, J.-C., Olamit, J., Liu, K., Browning, N. D., Kauzlarich, S. M., Chem. Mater. 17, 3181 (2005).Google Scholar
8. (a) Mikhaylova, M., Kim, D. K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalatos, T., Muhammed, M., Langmuir 20, 2472 (2004). (b) M. Mandal, S. Kundu, S. K. Ghosh, S. Panigrahi, T. K. Sau, S. M. Yusuf, T. Pal, J. Coll. Interf. Sci. 286, 187 (2005).Google Scholar
9. Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P., Williams, M. E., Nano Lett. 4, 719 (2004).Google Scholar
10. Sun, S. H., Murray, C. B., Weller, D., Folks, L., Moser, A., Science 287, 1989 (2000).Google Scholar
11. Sun, S., Anders, S., Thomson, T., Baglin, J. E. E., Toney, M. F., Hamann, H., Murray, C. B., Terris, B. D., J. Phys. Chem. B. 107, 5419 (2003).Google Scholar
12. Pileni, M. P., Lalatonne, Y., Ingert, D., Lisiecki, I., Courty, A., Faraday Discuss. 125, 251 (2004).Google Scholar
13. Wang, L. Y., Luo, J., Maye, M. M., Fan, Q., Rendeng, Q., Engelhard, M. H., Wang, C. M., Lin, Y. H., Zhong, C. J., J. Mater. Chem. 15, 1821 (2005).Google Scholar
14. Neri, G., Bonavita, A., Milone, C., Galvagno, S., Sens. Actuators B 93, 402 (2003).Google Scholar
15. Andreeva, D., Gold Bull. 35, 82 (2002).Google Scholar
16. Grady, K. O', J. Phys. D. 36, 13 (2003).Google Scholar
17. Cui, Y. L., Wang, Y. N., Hui, W. L., Zhang, Z. F., Xin, X. F., Chen, C., Biomed. Microdevices 7, 153 (2005).Google Scholar
18. (a) Sun, S. H., Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002). (b) S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. X. Li, J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
19. (a) Zheng, W. X., Maye, M. M., Leibowitz, F. L., Zhong, C. J., Anal. Chem., 72, 2190 (2000). (b) L. Han, J. Luo, N. N. Kariuki, M. M. Maye, V. W. Jones, C. J. Zhong, Chem. Mater. 15, 29 (2003).Google Scholar
20. (a) Leibowitz, F. L., Zheng, W. X., Maye, M. M., Zhong, C. J., Anal. Chem. 71, 5076 (1999). (b) L. Han, M. M. Maye, F. L. Leibowitz, N. K. Ly, C. J. Zhong, J. Mater. Chem. 11, 1259 (2001).Google Scholar
21. Han, L., Shi, X., Wu, W., Kirk, F. L., Luo, J., Wang, L. Y., Mott, D., Cousineau, L., Lim, I-Im S., Lu, S., Zhong, C. J., Sens. Actuators, B. 106, 431 (2005).Google Scholar