Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T19:45:22.774Z Has data issue: false hasContentIssue false

IR and MW Absorption Techniques for Bulk and Surface Recombination Control in High-Quaiity Silicon

Published online by Cambridge University Press:  15 February 2011

A. Kaniava
Affiliation:
Vilnius University, Sauletekio 10, 2054 Vilnius, Lithuania IMEC, Kepeldreef 75, B-3001 Leuven, Begium
U. Menczigar
Affiliation:
Institute of Semiconductor Physics, Walter-Korsing Straβe 2, 15230 Frankfurt (Oder), Germany
J. Vanhellemont
Affiliation:
IMEC, Kepeldreef 75, B-3001 Leuven, Begium
J. Poortmans
Affiliation:
IMEC, Kepeldreef 75, B-3001 Leuven, Begium
A. L. P. Rotondaro
Affiliation:
IMEC, Kepeldreef 75, B-3001 Leuven, Begium
E. Gaubas
Affiliation:
Vilnius University, Sauletekio 10, 2054 Vilnius, Lithuania
J. Vaitkus
Affiliation:
Vilnius University, Sauletekio 10, 2054 Vilnius, Lithuania
L. KÖster
Affiliation:
Wacker-Chemitronic GmbHA, P.O. Box 1140, D-84479 Burghausen, Germany
D. Graf
Affiliation:
Wacker-Chemitronic GmbHA, P.O. Box 1140, D-84479 Burghausen, Germany
Get access

Abstract

The carrier recombination rate in high-quality FZ and Cz silicon substrates is studied by contactless infrared and microwave absorption techniques. Different surface treatments covering a wide range of surface recombination velocity have been used for the separation of bulk and surface recombination components and evaluating of the efficiency of passivation. Limitations of effective lifetime approach are analyzed specific for low and high injection level. Sensitivity limits of the techniques for iron contamination are discussed

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bergholz, W., Zoth, G., Gelsdorf, F., and Kolbesen, B. in Defects in Silicon II, edited by Bullis, W.M., Gosele, U., and Shimura, F. (The Electrochem. Soc. Proc. 91–9, Pennington, NJ, 1991 ) pp. 2139.Google Scholar
2. Luke, K. and Cheng, L., J. Appl. Phys. 61, 2282 (1987).Google Scholar
3. Sproul, A.B., J. Appl. Phys. 76, 2851 (1994).Google Scholar
4. Schöfthaler, M., Rau, U., Langguth, G., Hirsh, M., Brendel, R., and Werner, J. H. in Proc. 12th Europ. Photovolt. Solar Energy Conf (Amsterdam, the Netherlands, 1994) pp. 533536.Google Scholar
5. Vaitkus, J., Gaubas, E., Jarasiunas, K., and Petrauskas, M., Semicond. Sci. Technol. 7, A131 (1992).Google Scholar
6. Linnros, J. and Grivickas, V., Phys. Rev. B,50, 16 943 (1994).Google Scholar
7. Häcker, R. and Hangleiter, A., J. Appl. Phys. 75, 7570 (1994).Google Scholar
8. Kaniava, A., Rotondaro, A.L.P., Vanhellemont, J., Simoen, E., Gaubas, E., Vaitkus, J., Hurd, T.Q., Mertens, P.W., Claeys, C., Gräf, D. in Proc. Ultra-Clean Processing of Silicon Surfaces (UCPSS '94) edited by Heyns, M. (Acco Leuven, Amersfoort, 1994) pp. 197200.Google Scholar