Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T05:46:26.816Z Has data issue: false hasContentIssue false

Ion-Induced Amorphization of Murataite

Published online by Cambridge University Press:  21 March 2011

Jie Lian
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Sergey V. Yudintsev
Affiliation:
Institute of Geology of Ore Deposits RAS, Staromonetnii per. 35, Moscow 109017, Russa
Sergey V. Stefanovsky
Affiliation:
SIA Radon, 7th Rostovskii per. 2/14, Moscow 119121, Russia
Olga I. Kirjanova
Affiliation:
SIA Radon, 7th Rostovskii per. 2/14, Moscow 119121, Russia
Rodney C. Ewing
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Get access

Abstract

Murataite A4B2C7O22-x, where A = Na+, Ca2+, REE3+, An3+/4+; B = Mn2+/3+, Zn2+; C = Ti4+, Fe3+, Al3+; 0≤x≤1, is an isometric, derivative of the fluorite-structure. Murataite is potentially suitable as a phase for the immobilization of rare earth (REE) and actinide elements (An). Murataite structures with three-(3C), five-(5C), and eight-fold (8C) multiples of the fluorite unit cell parameters have been identified. Radiation-induced amorphization of murataite has been investigated by 1 MeV Kr+ ion irradiation of three ceramic samples produced by melting in a resistive furnace and a cold crucible at 1400-1600 °C. The 1 MeV Kr+ ion irradiations were performed at room temperature using IVEM-Tandem Facility at Argonne National Laboratory. Radiation damage was observed by in-situ TEM. Initially, the irradiation caused disordering of the murataite structure. Murataite was rendered fully amorphous at a dose of (1.7∼1.9)Á1018 ion/m2. The pyrochlore structure phase (2C) is more radiation resistant to ion irradiation-induced amorphization than the murataite structure. Combining results on murataite with those pyrochlore and fluorite, a generally increasing trend in the susceptibility to ion beam damage is found in the fluorite-related structures as a function of the increasing multiples of the fluorite unit cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, J.W., Botinelly, T., Sharp, W.N., and Robinson, K., Am. Miner. 59, 172 (1974).Google Scholar
2. Morgan, P.E.D. and Ryerson, F.J., J. Mater. Sci. Lett. 1, 351 (1982).Google Scholar
3. Laverov, N.P., Yudintsev, S.V., Omelianenko, B.I., Nikonov, B.S., and Stefanovsky, S.V., Geol. Ore Deposits, 41, 85 (1999).Google Scholar
4. Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., Omelianenko, B.I., and Ptashkin, A.G., Mat. Res. Soc. Symp. Proc. 556, 121 (1999).Google Scholar
5. Stefanovsky, S.V., Kirjanova, O.I., Yudintsev, S.V., and Knyazev, O.A., in Waste Management '01 (Tuscon, 2001) CD Rom.Google Scholar
6. Sobolev, I.A., Stefanovsky, S.V., Ioudintsev, S.V., Nikonov, B.S., Omelianenko, B.I., and Mokhov, A.V., Mat. Res. Soc. Symp. Proc. 465, 363 (1997).Google Scholar
7. Chemical Durability and Related Properties of Solidified High-Level Waste forms (Vienna, IAEA, 1985) Tech. Rep. Ser. No. 257.Google Scholar
8. Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., and Omelianenko, B.I. in 24th Symp. Sci. Basis for Nucl. Waste Manag. Abstracts (Sydney, Australia, 2000). P.4.1.Google Scholar
9. Vance, E.R., Begg, B.D., Day, R.A., and Ball, C.J., Mat. Res. Soc. Symp. Proc. 353, 767 (1995).Google Scholar
10. Hart, K.P., Vance, E.R., Stewart, M.W.A., Weir, J., Carter, M.L., Hambley, M., Brownscombe, A., Day, R.A., Leung, S., Ball, C.J., Ebbinghaus, B., Gray, L., and Kan, T., Mat. Res. Soc. Symp. Proc. 506, 161 (1998).Google Scholar
11. Bakel, A.J., Zyryanov, V.N., Mertz, C.J., Buck, E.C., and Chamberlain, D.B., Mat. Res. Soc. Symp. Proc. 556, 181 (1999).Google Scholar
12. Ewing, R.C., Weber, W.J., and Clinard, F.W., Progr. Nucl. Energy, 29, 63 (1995).Google Scholar
13. Weber, W.J., J. Mat. Res., 13 (6), 1434 (1998).Google Scholar
14. Karioris, F.G., Govda, K. Appaji, Cartz, L.L., and Labbe, J.C., J. Nucl. Mat. 108&109, 748 (1982).Google Scholar
15. Ewing, R.C. and Wang, L.M., Nucl. Instr. Met. Phys. Res. B65, 319 (1992).Google Scholar
16. Smith, K.L., Blackford, M.G., and Lumpkin, G.R., Mat. Res. Soc. Symp. Proc. 506, 929 (1998).Google Scholar
17. Smith, K.L., Zaluzec, N.J., and Lumpkin, G.R., Mat. Res. Soc. Symp. Proc. 506, 931 (1998).Google Scholar
18. Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S., and Lumpkin, G.R., Nucl. Instr. Met. Phys. Res. B148, 704 (1998).Google Scholar
19. Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V. Govindan, J. Mat. Res. 14, 4470 (1999).Google Scholar
20. Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping Range of Ions in Solids (Pergamon Press. New York, 1985), 321p.Google Scholar
21. Sickafus, K. E.et al., J. Nucl. Mater. 274, 66 (1999).Google Scholar
22. White, T.J., Ewing, R.C., Wang, L.M., Forrester, J.S., and Montross, C., Mat. Res. Soc. Symp. Proc. 353, 1413 (1995).Google Scholar
23. Smith, K.L., Lumpkin, G.R., Blackford, M.G., and Vance, E.R., Mat. Res. Soc. Symp. Proc. 556, 1185 (1999).Google Scholar
24. Yudintsev, S.V., Stefanovsky, S.V., Kirjanova, O.I., J. Lian, and Ewing, R.C., Atomic Energy (Russ.) 90, 467 (2001).Google Scholar