Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T16:05:30.169Z Has data issue: false hasContentIssue false

Ionic mobility in Nasicon-type LiMIV2(PO4)3 materials followed by 7Li NMR spectroscopy.

Published online by Cambridge University Press:  04 April 2011

K. Arbi
Affiliation:
Instituto Ciencia de Materiales de Madrid (CSIC), 28049 Cantoblanco, Madrid, Spain. Instituto de Ciencia de la Construcción Eduardo Torroja (CSIC), 28033 Madrid, Spain.
I. Sobrados
Affiliation:
Instituto Ciencia de Materiales de Madrid (CSIC), 28049 Cantoblanco, Madrid, Spain.
M. Hoelzel
Affiliation:
Forschungsneutronenquelle Heinz-Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstr. 1, D-85747 Garching, Germany.
A. Kuhn
Affiliation:
Universidad SanPablo-CEU, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.
F. Garcia-Alvarado
Affiliation:
Universidad SanPablo-CEU, Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.
J. Sanz
Affiliation:
Instituto Ciencia de Materiales de Madrid (CSIC), 28049 Cantoblanco, Madrid, Spain.
Get access

Abstract

Lithium mobility in LiM2(PO4)3 compounds, with M= Ge, Ti, Sn, Zr and Hf, has been investigated by 7Li Nuclear Magnetic Resonance (NMR) spectroscopy in the temperature range 100-500 K. From the analysis of 7Li NMR quadrupole interactions (CQ and η parameters), Li sites occupancy and exchange processes between structural sites have been studied. Below 250K, Li ions are preferentially located at M1 sites in rhombohedral phases, but occupy M12 sites in triclinic ones. At increasing temperatures, Li mobility has been deduced from spin-spin () and spin-lattice relaxation () rates. In this analysis, the presence of two relaxation mechanisms in plots has been associated with departures of conductivity from the Arrhenius behavior. At high temperatures, residence times at M12−T11−T11−T1 and M12 sites become similar and conductivity significantly increase. This superionic state can be achieved by enlarged order-disorder transformations in rhombohedral phases, or by sharp first order transitions in triclinic ones. Results described in the LiTi2(PO4)3 sample have been compared with those obtained in rhombohedral Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 series showing respectively higher and lower conductivities. In the case of Li1.2Ti1.8Al0.2(PO4)3, displaying the highest reported conductivity, NMR results are discussed in relation with those obtained by Neutron Diffraction (ND) and Impedance Spectroscopy (IS). Diffusion coefficients determined by NMR Pulse Field Gradient (PFG) technique are similar to those deduced from Impedance Spectroscopy and NMR relaxation data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, H., Faulkner, T., Barker, J., Saïdi, M. Y., J. Power Sources, 189, 748 (2009).Google Scholar
2. Aatiq, A., Ménétrier, M., Croguenne, L., Suard, E., Delmas, C., J. Mat. Chem. 12, 2971 (2002).Google Scholar
3. Delmas, C., Nadiri, A., Soubeyroux, J.L.. Solid State Ionics 28-30, 419 (1988).Google Scholar
4. Alami, M., Brochu, R., Soubeyroux, J.L., Graverau, P., le Flem, G., Hagenmuller, P., J. Solid State Chemistry, 90, 185 (1991).Google Scholar
5. Tran Qui, D., Hamdoune, S., Soubeyroux, J. L. and Prince, E., J. Solid State Chemistry, 72, 309 (1988).Google Scholar
6. Morin, E., Angenault, J., Couturier, J.C., Quarton, M., He, H., Klinowski, J., Eur. J. Solid State Inorg. Chem. 34, 947 (1997).Google Scholar
7. Losilla, E.R., Aranda, M.A.G., Martinez-Lara, M., Bruque, S., Chem. Mat. 9, 1678 (1997).Google Scholar
8. Catti, M., Stramare, S., Ibberson, R., Solid State Ionics, 123, 173 (1999).Google Scholar
9. Arbi, K., Mandal, S., Rojo, J.M., Sanz, J., Chem. Mat. 14, 1091 (2002).Google Scholar
10. Arbi, K., Tabellout, M., Lazarraga, M.G., Rojo, J.M., Sanz, J., Phys. Rev. B, 72, 94302(2005).Google Scholar
11. Arbi, K., Ayadi-Trabelsi, M., Sanz, J., J. Mater. Chem., 12, 2985 (2002).Google Scholar
12. Winand, J. M., Rulmont, A., Tarte, P. J.. J. Solid State Chem. 93, 341 (1991).Google Scholar
13. Massiot, D., WINFIT; Bruker-Franzen Analytik GmbH. Bremen, Germany, (1993).Google Scholar
14. Abragam, A., The Principles of Nuclear Magnetic; Oxford University Press, Oxford (1961).Google Scholar
15. Carr, H. Y. and Purcell, E. M., Phys. Rev. 94, 630 (1954).Google Scholar
16. Meiboom, S. and Gill, D., Rev. Sci. Instr. 29, 688 (1958).Google Scholar
17. París, M.A., Martinez-Juárez, A., Rojo, J. M. and Sanz, J., J. Phys. Condens. Matter 8, 5355, (1996).Google Scholar
18. Grüne, M., Müller-Warmuth, W., Phys. Chem. 95, 1068 (1991).Google Scholar
19. Funke, K., Prog. Solid State Chem. 22, 111 (1993).Google Scholar
20. Ngai, K.L. Phys. Rev. B 48, 13481 (1993).Google Scholar