Skip to main content Accessibility help

Ionic mobility in Nasicon-type LiMIV2(PO4)3 materials followed by 7Li NMR spectroscopy.

  • K. Arbi (a1) (a2), I. Sobrados (a1), M. Hoelzel (a3), A. Kuhn (a4), F. Garcia-Alvarado (a4) and J. Sanz (a1)...


Lithium mobility in LiM2(PO4)3 compounds, with M= Ge, Ti, Sn, Zr and Hf, has been investigated by 7 Li Nuclear Magnetic Resonance (NMR) spectroscopy in the temperature range 100-500 K. From the analysis of 7 Li NMR quadrupole interactions (CQ and η parameters), Li sites occupancy and exchange processes between structural sites have been studied. Below 250K, Li ions are preferentially located at M1 sites in rhombohedral phases, but occupy M12 sites in triclinic ones. At increasing temperatures, Li mobility has been deduced from spin-spin () and spin-lattice relaxation () rates. In this analysis, the presence of two relaxation mechanisms in plots has been associated with departures of conductivity from the Arrhenius behavior. At high temperatures, residence times at M12−T11−T11−T 1 and M12 sites become similar and conductivity significantly increase. This superionic state can be achieved by enlarged order-disorder transformations in rhombohedral phases, or by sharp first order transitions in triclinic ones. Results described in the LiTi2(PO4)3 sample have been compared with those obtained in rhombohedral Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 series showing respectively higher and lower conductivities. In the case of Li1.2Ti1.8Al0.2(PO4)3, displaying the highest reported conductivity, NMR results are discussed in relation with those obtained by Neutron Diffraction (ND) and Impedance Spectroscopy (IS). Diffusion coefficients determined by NMR Pulse Field Gradient (PFG) technique are similar to those deduced from Impedance Spectroscopy and NMR relaxation data.



Hide All
1. Huang, H., Faulkner, T., Barker, J., Saïdi, M. Y., J. Power Sources, 189, 748 (2009).
2. Aatiq, A., Ménétrier, M., Croguenne, L., Suard, E., Delmas, C., J. Mat. Chem. 12, 2971 (2002).
3. Delmas, C., Nadiri, A., Soubeyroux, J.L.. Solid State Ionics 28-30, 419 (1988).
4. Alami, M., Brochu, R., Soubeyroux, J.L., Graverau, P., le Flem, G., Hagenmuller, P., J. Solid State Chemistry, 90, 185 (1991).
5. Tran Qui, D., Hamdoune, S., Soubeyroux, J. L. and Prince, E., J. Solid State Chemistry, 72, 309 (1988).
6. Morin, E., Angenault, J., Couturier, J.C., Quarton, M., He, H., Klinowski, J., Eur. J. Solid State Inorg. Chem. 34, 947 (1997).
7. Losilla, E.R., Aranda, M.A.G., Martinez-Lara, M., Bruque, S., Chem. Mat. 9, 1678 (1997).
8. Catti, M., Stramare, S., Ibberson, R., Solid State Ionics, 123, 173 (1999).
9. Arbi, K., Mandal, S., Rojo, J.M., Sanz, J., Chem. Mat. 14, 1091 (2002).
10. Arbi, K., Tabellout, M., Lazarraga, M.G., Rojo, J.M., Sanz, J., Phys. Rev. B, 72, 94302(2005).
11. Arbi, K., Ayadi-Trabelsi, M., Sanz, J., J. Mater. Chem., 12, 2985 (2002).
12. Winand, J. M., Rulmont, A., Tarte, P. J.. J. Solid State Chem. 93, 341 (1991).
13. Massiot, D., WINFIT; Bruker-Franzen Analytik GmbH. Bremen, Germany, (1993).
14. Abragam, A., The Principles of Nuclear Magnetic; Oxford University Press, Oxford (1961).
15. Carr, H. Y. and Purcell, E. M., Phys. Rev. 94, 630 (1954).
16. Meiboom, S. and Gill, D., Rev. Sci. Instr. 29, 688 (1958).
17. París, M.A., Martinez-Juárez, A., Rojo, J. M. and Sanz, J., J. Phys. Condens. Matter 8, 5355, (1996).
18. Grüne, M., Müller-Warmuth, W., Phys. Chem. 95, 1068 (1991).
19. Funke, K., Prog. Solid State Chem. 22, 111 (1993).
20. Ngai, K.L. Phys. Rev. B 48, 13481 (1993).


Ionic mobility in Nasicon-type LiMIV2(PO4)3 materials followed by 7Li NMR spectroscopy.

  • K. Arbi (a1) (a2), I. Sobrados (a1), M. Hoelzel (a3), A. Kuhn (a4), F. Garcia-Alvarado (a4) and J. Sanz (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed