Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T14:39:07.611Z Has data issue: false hasContentIssue false

Ion Insertion in Highly Conjugated Polypyrrole

Published online by Cambridge University Press:  25 February 2011

S. Skaarup
Affiliation:
Physics Laboratory III andDepartment of Physical Chemistry the Technical University of Denmark, DK-2800 Lyngby, Denmark
K. West
Affiliation:
Department of Physical Chemistry the Technical University of Denmark, DK-2800 Lyngby, Denmark
B. Zachau-Christiansen
Affiliation:
Department of Physical Chemistry the Technical University of Denmark, DK-2800 Lyngby, Denmark
M.A. Careem
Affiliation:
Physics Laboratory III andDepartment of Physical Chemistry the Technical University of Denmark, DK-2800 Lyngby, Denmark
Get access

Abstract

Polypyrrole has been synthesized electrochemically at current densities from 6.4 μA/cm2 to 3.84 mA/cm2. Low current density is crucial to the formation of a highly conjugated modification as shown by the low value of the π-π* transition energy (2.83 eV). The low current form displays a cyclic voltammogram with a detailed structure with narrow peaks. Following the presence and evolution of the peaks is a powerful diagnostic method of monitoring the state of the polymer. The solvent (water-free propylene carbonate or acetonitrile) can be reversibly exchanged during oxidation/reduction cycling and has little effect on the nature of the polymer formed, but influences the properties during the doping process greatly. In contrast, the ion present during polymerization (ClO4 or CF3SO3) seems to irreversibly influence the morphology of the film. The highly conjugated, low current form is to be preferred as a well-defined point of reference close to the intrinsic properties of pure polypyrrole.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gustafsson, G., Lundström, I., Liedberg, B., Wu, C.R., Ingands, O. and Wennerström, O., Synth. Met. 31, 163, (1989).Google Scholar
2. Koopal, G.J.C., Third Generation Amperometric Biosensors, PhD thesis, University of Nijmegen, the Netherlands, 1992.Google Scholar
3. Naegele, D. and Bittihn, R., Solid State Ionics 28–30, 983, (1988).Google Scholar
4. Waller, A.M. and Compton, R.G., J. Chem. Soc., Faraday Trans. 1, 85, 977, (1989).Google Scholar
5. Lippe, J. and Holze, R., Synth. Met. 41–43, 2927, (1991).Google Scholar
6. Zotti, G. and Schiavon, G., Synth. Met. 41–43, 445, (1991).Google Scholar
7. Kanatzidis, M.G., Chem. Eng. News Dec. 3, 983, (1990).Google Scholar
8. Martina, S., Enkelmann, V., Schlueter, A.-D. and Wegner, G., Synth. Met. 41–43, 403, (1991).Google Scholar
9. Novak, P., Rasch, B. and Vielstich, W., J. Electrochem. Soc. 138, 3300, (1991).Google Scholar
10. Heinze, J., Synth. Met. 41–43, 2805, (1991).Google Scholar
11. Beck, F., Oberst, M. and Jansen, R., Electrochim. Acta 35, 1841, (1990).Google Scholar
12. Novak, P. and Vielstich, W., J. Electrochem. Soc. 137, 1681, (1991).Google Scholar
13. Skaarup, S., West, K., Zachau-Christiansen, B. and Jacobsen, T., Synth. Met. 51, 267, (1992).Google Scholar
14. West, K., Jacobsen, T., Zachau-Christiansen, B., Careem, M.A. and Skaarup, S., Synth. Met. in press.Google Scholar
15. Novak, P. and Vielstich, W., J. Electrochem. Soc. 137, 1036, (1991).Google Scholar
16. Feldberg, S.W., J. Am. Chem. Soc. 106, 4671, (1984).Google Scholar
17. Tanguy, J., Mermilliod, N. and Hoclet, M., J. Electrochem. Soc. 134, 795, (1987).Google Scholar
18. Yeu, T., Yin, K.-M., Carbajal, J. and White, R.E., J. Electrochem. Soc. 138, 2869, (1991).Google Scholar
19. West, K., Jacobsen, T., Zachau-Christiansen, B. and Atlung, S., Electrochim. Acta 28, 97, (1983).Google Scholar
20. West, K., Zachau-Christiansen, B., Jacobsen, T. and Skaarup, S., Mater. Sci. Eng. B 13, 229, (1992).Google Scholar
21. Cai, Z. and Martin, C.R., J. Electroanal. Chem. 300, 35, (1991).Google Scholar
22. West, K., Careem, M.A. and Skaarup, S., Proc. Conf. on Polymer Ionics, Gothenburg, Sweden, 19-21 aug. 1992.Google Scholar
23. Ford, W.K., Duke, C.B. and Salaneck, W.R., J. Chem. Phys. 77, 5030, (1982).Google Scholar
24. Zotti, G., Martina, S., Wegner, G. and Schliiter, A.-D., Adv. Mater., in press.Google Scholar
25. Cheung, K.M., Bloor, D. and Stevens, G.C., J. Mater. Sci. 25, 3814, (1990).Google Scholar
26. Warren, L.F. and Anderson, D.P., J. Electrochem. Soc. 134, 101, (1987).Google Scholar
27. Mitchell, G.R., Cywinski, R., Mondal, S. and Sutton, S.J., J. Phys. D: Appl. Phys. 22, 1231, (1989).Google Scholar
28. Qian, R. and Qiu, J., Polym. Jour. 19, 157, (1987).Google Scholar
29. Novak, P., Kötz, R. and Haas, O., J. Electrochem. Soc. in press (1992).Google Scholar
3 O. Beelen, E., Riga, J. and Verbist, J.J., Synth. Met. 41–43, 449, (1991).Google Scholar