Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T06:23:41.268Z Has data issue: false hasContentIssue false

Ion Implantation Processing of Gaas and Related Compounds

Published online by Cambridge University Press:  21 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The formation of doped or semi-insulating layers by ion implantation in both Ga- and In- based semiconductors is reviewed. The Ga-based materials (GaAs, AIGaAs, GaP, GaSb) tend to show similar characteristics in terms of producing relatively low (n ≤ 3 × 1018 cm-3) maximum carrier densities for donor implanted layers, and much higher values for acceptor implants (p ≤ 5 × 1019 cm-3 ). Ion-induced damage is widely used for device isolation in these materials, with midgap levels associated with the damage trapping free carriers and leading to semi-insulating behaviour. By contrast, the In-based materials (InP, InAs, InSb and InGaAs) show higher maximum carrier densities for acceptor implants than for donor implants, and the use of ion damage for isolation purposes is much less effective than in GaAs. All of these materials display singularly poor regrowth characteristics, requiring in some cases the use of elevated temperature implantation to prevent amorphization

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morgan, D. V. and Eisen, F. H., Galluim Arsenide, ed Howes, M. J. and Morgan, D. V. (Wiley & Sons, NY, 1985), Chapter 5.Google Scholar
2. Pearton, S. J., Solid State Phenomena, 1+2 247 (1988).Google Scholar
3. Sadana, D. K., Nucl. Instr. Meth. in Phys. Res. B7/8 375 (1985).Google Scholar
4. Williams, J. S., Laser Annealing of Semiconductors, ed. Poate, J. M. (Academic Press, Sydney 1984), Chapter 10.Google Scholar
5. Davies, D. E., Nucl. Instr. Meth in Phys. Res. B7/8 387 (1985).Google Scholar
6. Pearton, S. J., Gibson, J. M., Jacobson, D. C., Poate, J. M., Williams, J. S. and Boerma, D. O., Mat. Res. Soc. Symp. Proc. 51 351 (1986).Google Scholar
7. Donnelly, J. P., Nucl. Instr. Meth. 182/183 553 (1981).Google Scholar
8. Stephens, K. G., Nucl. Instr. Meth. 209/210 589 (1983).Google Scholar
9. Anholt, R., Balasingam, P., Chou, S. Y., Sigmon, T. W. and Deal, M., J. Appl. Phys. 64 3429 (1988).Google Scholar
10. Blunt, R. T., Solid State Devices, ed. Balk, P. and Folberth, O. G. (Elselvier, The Netherlands 1986) pp. 133148.Google Scholar
11. Wesch, W., Wendler, E., Gotz, G. and Kekelidse, N. D., J. Appl. Phys. 65 519 (1989).Google Scholar
12. Rosenblatt, D. H., Hitchens, W. R., Anholdt, R. E. and Sigmon, T. W., IEEE Electron Dev. Lett. 9 139 (1988).Google Scholar
13. Pearton, S. J., Williams, J. S., Short, K. T., Johnson, S. T., Jacobson, D. C., Poate, J. M., Gibson, J. M. and Boerma, D. O., J. Appl. Phys. 65 1089 (1989).Google Scholar
14. Sette, F., Pearton, S. J., Poate, J. M. and Rowe, J. E., Phys. Rev. Lett. 56 2637 (1986).Google Scholar
15. Cummings, K. D., Pearton, S. J. and Vella-Coleiro, G. P., J. Appl. Phys.60 163 (1986).Google Scholar
16. Bensalem, R. and Sealy, B. J., Vacuum 11 921 (1986).Google Scholar
17. Donnelly, J. P. and Hurwitz, C. E., Solid State Electron 21 475 (1978).Google Scholar
18. Pearton, S. J., lanuzzi, M. P., Reynolds, C. L. Jr and Peticolas, L., Appl. Phys. Lett. 52 395 (1988).Google Scholar
19. Rao, M. V., Babu, R. S., Deitrich, H. B. and Thompson, P. E., J. Appl. Phys. 64 4755 (1988).Google Scholar
20. Tell, B., Chang, T. Y., Brown-Goebeler, K. F., Kuo, J. M. and Sauer, N. J., J. Appl. Phys. 64 3290 (1988).Google Scholar
21. Heckingbottom, R. and Ambridge, T., Rad. Eff. 17 31 (1973).Google Scholar
22. Stoneham, E., Patterson, G. and Gladstone, J., J. Electron. Mater. 9 371 (1980).Google Scholar
23. Kasahara, J., Taira, K., Kato, Y., Arai, M. and Watanabe, N., Japan J. Appl. Phys. 32 L373 (1983).Google Scholar
24. Adachi, S. and Yamahata, S., J. Appl. Phys. 64 3312 (1988).Google Scholar
25. Wang, K. W., Appl. Phys. Lett. 51 2127 (1987).Google Scholar
26. Thompson, P. E. and Dietrich, H. B., J. Electrochem. Soc. 135 1240 (1988).Google Scholar
27. Lee, S. Tong, Braunstein, G. and Chen, S., Mat. Res. Soc. Symp. Proc. 126 183 (1988).Google Scholar