Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T08:21:56.319Z Has data issue: false hasContentIssue false

Ion Bombardment Effect on the Properties of a-Si:H

Published online by Cambridge University Press:  21 February 2011

B. Drevillon
Affiliation:
Equipe Synthèse de Couches Minces pour 1'Energétique LPNHE – Ecole Polytechnique -91128 PALAISEAU (France)
J. P. M. Schmitt
Affiliation:
Equipe Synthèse de Couches Minces pour 1'Energétique LPNHE – Ecole Polytechnique -91128 PALAISEAU (France)
Get access

Abstract

In a low pressure multipole plasma, the energy of the charged species impinging on the substrate can be varied electrostatically. Spectroscopic ellipsometry is used to study the film growth and the surface morphology. Hydrogen evolution is used to investigate the release of hydrogen from the amorphous network. Moderate energy ion bombardment (Eion ‰ 50 eV) is shown to favour the formation of homogeneous high density films with a sharp interface. Weak ion bombardment (Eion ‰ 20 eV) results in a microscopically rough surface. The material strucbural variations are evidenced by hydrogen evolution kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Fritzsche, H., Thin Solid films 60 (1979) 147, and references therein.Google Scholar
2- Ross, R.C., Johncock, A.G. and Chan, A.R., J. Non-Cryst. Solids 66 (1984) 81.Google Scholar
3- Beyer, W. and Wagner, H., J. Non-Cryst. Solids 59–60 (1983) 161 and references therein.Google Scholar
4- Knights, J.C. and LUJAN, R.J., Appi. Phys. Phys. Lett. 35 (1979) 244.CrossRefGoogle Scholar
5- Knights, J.C., Lucovsky, G. and Nemanich, R.J., N. Non-Cryst. Solids 32 (1979) 393.Google Scholar
6- Knights, J.C., J. Non Cryst. Solids 35–36 (1980) 159.CrossRefGoogle Scholar
7- Chen, K.J. and Fritzsche, H., Solar Energy mat. 8(1982) 205.Google Scholar
8- Drevillon, B., Perrin, J., Siefert, J.M., Huc, J., Lloret, A., de Rosny, G. and Schmitt, J.M.P., Appl. Phys. lett. 42 (1983) 801.Google Scholar
9- Drevillon, B., Huc, J. and Boussarssar, N., J. Non-Cryst. Solids 59–60 (1983) 735.Google Scholar
10- Drevillon, B., Thin Solid films (to be published)Google Scholar
11- Vanderhaghen, R., Chaurand, B. and Drevillon, B., J. de Phys. (to be published).Google Scholar
12- Drevillon, B. and Toulemonde, M., J. of Appl. Phys. (to be published).Google Scholar
13- Perrin, J., Schmitt, J.P.M., de Rosny, G., Drevillon, B., Huc, J., and Lloret, A., Chem. Phys. 73 (1982) 383.Google Scholar
14- Drevillon, B., Perrin, J., Marbot, R., Violet, A. and Dalby, J.L., Rev. Sci. Instr. 53 (1982) 969.Google Scholar
15- Vanderhaghen, R., Chaurand, B. and Drevillon, B., Thin Solid Films (to be published).Google Scholar
16- Drevillon, B. and Vaillant, F., Thin Solid Films (to be published).Google Scholar
17- Biegelsen, D.K., Street, B.A., Tsai, C.C. and Knights, J.C., Phys. Rev. B20 (1979) 4839.Google Scholar