Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T14:16:45.375Z Has data issue: false hasContentIssue false

Ion Beam Treatment of Ohmic Contacts to n-TYPE Hg1-xCdxTe

Published online by Cambridge University Press:  25 February 2011

Patrick W. Leech
Affiliation:
Telecom Research Laboratories, Melbourne, Victoria, Australia.
Geoffrey K. Reeves
Affiliation:
Royal Melbourne Institute of Technology, Victoria, Australia.
Yuan H. Li
Affiliation:
Royal Melbourne Institute of Technology, Victoria, Australia.
Get access

Abstract

The application of ion beam mixing and ion implantation techniques in the formation of ohmic contacts to n-Hg1-xCdxTe (x = 0.6, 0.7) has been investigated. For experiments in ion beam mixing, an indium layer (15nm thick) on Hg1-xCdxTe wasbombarded with 45keV Te+ ions at doses ranging from 1 × 1013 to 1 × 1016 cm2. Minimum values of specific contact resistance, pc, of 4 × 10-4Ωcm-2 were measured for a dose of 1 × 1016 cm-2 after 200°C annealing; pc was independent of dose in this range. Analysis of the interfaces by Auger depth profile and Rutherford backscattering spectrometry has shown that ion beam mixing produced an enhanced indiffusion of indium. In comparison, samples which were ion implanted with In+ at 50keV prior to metalisation showed a reduction in pc which was strongly dependent on dosage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Orsal, B., Alabeara, R., Valenza, M., Lecoy, G., Meslage, J. and Boisrobert, C. Y., IEEE Trans.Electron Devices, ED-35, 101, (1988).CrossRefGoogle Scholar
2. Leech, P. W., Gwynn, P. J., Pain, G. N., Petkovic, N. R., Thompson, J. and Jamieson, D. N. in Long Wavelength Semiconductor Devices, Materials and Processes, edited by Katz, A., Biefield, R. M., Gunshor, R. L. and Malik, R. J. (Mater. Res. Soc. Proc. 214 Boston, MA 1990) pp. 1116.Google Scholar
3. Leech, P. W., Reeves, G. K. and Kibel, M. H. in Long Wavelength Semiconductor Devices, Materials and Processes, edited by Katz, A., Biefield, R. M., Gunshor, R. L. and Malik, R. J. (Mater. Res. Soc. Proc. 216, Boston, MA 1990) pp. 155160.Google Scholar
4. Leech, P. W. and Reeves, G. K., J. Vac. Sci. Technol., A10, 105, (1992).Google Scholar
5. Johnson, E. S. and Schmit, J. T., J. Electronic Materials, 6, 25 (1977).Google Scholar
6. Bhattacharya, R. S., Rai, A. K., Ezis, A., Rashid, M. H. and Pronko, P. P., J. Vac Sci. Technol., A3, 2316 (1985).Google Scholar
7. Inada, T., Kakinuma, H., Shirota, A., Matsomoto, J., Ishikiriyama, M. and Funaki, Y., Nucl. Instrum. and Meth. Phys. Res., B7/8, 576 (1985).CrossRefGoogle Scholar
8. Jie, Z. and Thompson, D. A., J. Electronic Materials, 17, 249 (1988).Google Scholar
9. Palmstrom, C. J. and Morgan, D. V., in Gallium Arsenide Materials, Devices and Circuits, edited by Howes, M. J. and Morgan, D. V. (John Wiley and Sons, Chichester, 1985), p. 221.Google Scholar
10. Reeves, G. K. and Harrison, H. B., IEEE Electron Device Lett., EDL-3, 111 (1982).Google Scholar
11. Destefanis, G. L., J. Vac. Sci. Technol., A3, 171, (1985).Google Scholar
12. Bubulac, L. O. and Tennant, W. E., App. Phys. Letts., 51(5), 355, (1987).Google Scholar
13. Uzan-Saguy, C., Comedi, D., Richter, V., Kalish, R. and Tribolet, R., J. Vac. Sci. Technol., A7, 2575, (1989).Google Scholar