Skip to main content Accessibility help
×
Home

Ion Beam Synthesis of Luminescent Si and Ge Nanocrystals in a Silicon Dioxide Matrix

  • H. A. Atwater (a1), K. V. Shcheglov (a1), S. S. Wong (a1), K. J. Vahala (a1), R. C. Flagan (a1), M. L. Brongersma (a2) and A. Polman (a2)...

Abstract

Ion beam synthesis of Si and Ge nanocrystals in an SiO2 Matrix is performed by precipitation from supersaturated solid solutions created by ion implantation. Films of SiO2 on (100) Si substrates are implanted with Si and Ge at doses 1 × 1016/cm2 - 5 × 1016/cm2. IMplanted samples are subsequently annealed to induce precipitation of Si and Ge nanocrystals. Raman spectroscopy and high-resolution transmission electron microscopy indicate a correlation between visible room-temperature photoluminescence and the formation of diamond cubic nanocrystals approximately 2–5 nm in diameter in annealed samples. As-implanted but unannealed samples do not exhibit luminescence. Rutherford backscattering spectra indicate a steepening of implanted Ge profiles upon annealing. Photoluminescence spectra are correlated with annealing temperatures, and compared with theoretical predictions for various possible luminescence Mechanisms, such as radiative recombination of quantum-confined excitons, as well as possible localized state luminescence related to structural defects in SiO2 Potential optoelectronic device applications are also discussed.

Copyright

References

Hide All
[1] Canham, L.T., Appl. Phys. Lett., 57 1046 (1990).
[2] Delley, B. and Steigmeier, E.F., Phys. Rev., B 47, 1397 (1993).
[3] Takagahara, T. and Takeda, K., Phys. Rev., B 46, 15578 (1992).
[4] Kimura, H., Imanaga, S., Hayafuji, Y. and Adachi, H., J. Phys. Soc. Jpn., 62, 2663 (1993).
[5] Matsumoto, N., Takeda, K., Teramae, H. and Fujino, M., Advances in Chemistry, 224, ACS Books, (1989), p. 515.
[6] Dimaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., Cutro, J.A., and Brorson, S.D., J. Appl. Phys. 56, 401 (1984).
[7] Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1991).
[8] Kanemitsu, Y., Uto, H., Masumoto, Y. and Maeda, Y., Appl. Phys. Lett. 61 2187 (1992).
[9] Hayashi, S., Kanzawa, Y., Kataoka, M., Nagareda, T. and Yamamoto, K., Z. Phys. D 26, 144 (1993).
[10] Hayashi, S., Fijii, M., Yamamoto, K., Jpn. J. Appl. Phys. 28, 1464 (1989)
[11] Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).
[12] Yoffe, A.D., Advances in Physics, 42, 173 (1993).
[13] Shimizu-Iwayama, T., Ohshima, M., Niimi, T., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Phys. Cond. Matter 5, L375 (1993).
[14] Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.
[15] Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., to be published in Appl. Phys. Lett., 1994.
[16] Song, K.S. and Williams, R.T., Self-Trapped Excitons, Springer Verlag, New York, 1993, Ch. 7, pp. 270299.
[17] Venkatasubramanian, R., Malta, D.P., Timmons, M.L. and Hutchby, J.A., Appl. Phys. Lett., 59, 1603 (1993).
[18] Kanemitsu, , Suzuki, K., Uto, H., Masumoto, Y., Matsumoto, T., Kyushin, S., Higuchi, K., and Matsumoto, H.., Appl. Phys. Lett., 61 2446 (1992);
Kanemitsu, Y., Suzuki, K., Uto, H., Masumoto, Y., Higuchi, K., Kyushin, S. and Matsumoto, H., Jpn. J. Appl. Phys. 32, 408 (1993).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed