Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T02:42:53.588Z Has data issue: false hasContentIssue false

Ion Beam Slicing of Single Crystal Oxide Thin Films

Published online by Cambridge University Press:  17 March 2011

S. Thevuthasan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, theva@pnl.gov
V. Shutthanandan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352
W. Jiang
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352
W. J. Weber
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352
Get access

Abstract

Epitaxial thin film liftoff using the ion-slicing method has been applied to SrTiO3 single crystals. Rutherford backscattering spectrometry along with channeling (RBS/C) has been used to investigate the relative disorder as a function of temperature from the samples that were irradiated by 40 KeV hydrogen ions to a fluence of 5.0×1016 H+/cm2. Hydrogen profiles were also measured as a function of annealing temperature to understand the role of hydrogen in the ion slicing process. Film cleavage occurred during or after annealing at 570 K, and cleaved film has been successfully transferred to a silicon substrate using ceramic adhesive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bruel, M., Electron. Lett. 31, 1201(1995).Google Scholar
2. Dance, B., Semiconductor International, May, 58 (1997).Google Scholar
3. Maleville, C., Aspar, B., Poumeyrol, T., Moriceau, H., Bruel, M., Auberton-Herve, A.J., and Barge, T., Mater. Sci. and Eng. B46, 14 (1997).Google Scholar
4. Aspar, B., Bruel, M., Moriceau, H., Maleville, C., Poumeyrol, T., Papon, A.M., Claverie, A., Benassayag, G., Auberton-Herve, A.J., and Barge, T., Microelectron. Eng. 36, 233 (1997); B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A.M. Papon, J.F. Michaud, and M. Bruel, Electron. Lett. 35, 1024 (1999).Google Scholar
5. Agarwal, A., Haynes, T.E., Venezia, V.C., Holland, O.W., and Eaglesham, D.J., Appl. Phys. Lett. 72, 1086 (1998).Google Scholar
6. Weldon, M.K., Collot, M., Chabal, Y.J., Venezia, V.C., Agarwal, A., Haynes, T.E., Eaglesham, D.J., Christman, S.B., and Chaban, E.E., Appl. Phys. Lett. 73, 3721 (1998).Google Scholar
7. Tong, Q.Y., Lee, T.H., Werner, P., Gosele, U., Bergmann, R.B., and Werner, J.H., J. Electrochemical Society 144, L111 (1997); Q.Y. Tong, T.H. Lee, L.J. Huang, Y.I. Chao, and U. Gosele, Electron. Lett. 34, 407 (1998).Google Scholar
8. Cioccio, L. Di, Tiec, Y. Le, Letertre, F., Jaussaud, C., and Bruel, M., Electron. Lett 32, 1144 (1996); L. Di Cioccio, F. Letertre, Y. Le Tiec, A.M. Papon, C. Jaussaud, and M. Bruel, Mater. Sci. and Eng. B46, 349 (1997).Google Scholar
9. Levy, M., Osgood, R.M. Jr, Bhalla, A.S., Guo, R., Cross, L.E., Kumar, A., Sankaran, S., and Bakhru, H., Appl. Phys. Lett. 77, 2124 (2000); M. Levy, R.M. Osgood Jr., R. Liu, L.E. Cross, A. Kumar, and H. Bakhru, Appl. Phys. Lett. 73, 2293 (1998).Google Scholar
10. Radojevic, A.M., Levy, M., Kwak, H., and Osgood, R.M. Jr, Appl. Phys. Lett. 75, 2888 (1999); A.M. Radojevic, M. Levy, R.M. Osgood Jr., A. Kumar, H. Bakhru, C. Tian, and C. Evans, Appl. Phys. Lett. 74, 3197 (1999).Google Scholar
11. Levy, M., Osgood, R.M. Jr, Kumar, A., and Bakhru, H., Appl. Phys. Lett. 71, 2617 (1997).Google Scholar
12. Thevuthasan, S., Peden, C.H.F., Engelhard, M.H., Baer, D.R., Herman, G.S., Jiang, W., Liang, Y., and Weber, W.J., Nucl. Instr.Meth. A 420, 81 (1999).Google Scholar