Skip to main content Accessibility help
×
Home

Ion Beam Irradiation-induced Amorphization in Nano-sized KxLnyTa2O7-v Tantalate Pyrochlore

  • Fengyuan Lu (a1), May Nyman (a2), Yiqiang Shen (a1) (a3), Zhili Dong (a3), Gongkai Wang (a1) (a4), Fuxiang Zhang (a5), Rodney Ewing (a5) and Jie Lian (a1)...

Abstract

The radiation response of nano-sized tantalate pyrochlores, KxLnyTa2O7-v (Ln = Gd, Y, and Lu) with average grain sizes of ~ 10 nm was investigated using 1 MeV Kr2+ ion beam irradiations. EDS measurements and XRD refinement reveal that the Y3+ and Lu3+-doped samples consist of two pyrochlore phases as K0.8YTa2O6.9/K0.4Y0.8Ta2O6.4 and KLuTa2O7/K0.4Lu0.8Ta2O6.4 respectively; whereas a single phase of K0.8GdTa2O7 only exists in the Gd3+-doped tantalate pyrochlore. In situ TEM observation confirms ion beam-induced amorphization occurring in all of the nano-sized KxLnyTa2O7-v. At elevated temperatures, both K0.8GdTa2O7 and K0.8YTa2O6.9/K0.4Y0.8Ta2O6.4 exhibit higher radiation tolerance than KLuTa2O7/K0.4Lu0.8Ta2O6.4, and the critical temperatures of K0.8GdTa2O7 and K0.8YTa2O6.9/K0.4Y0.8Ta2O6.4 are estimated to be 1167 ± 41 K and 1165 ± 34 K, respectively, lower than that of KLuTa2O7/K0.4Lu0.8Ta2O6.4 (~ 1291 K). The K0.8GdTa2O7, K0.8YTa2O6.9 and KLuTa2O7 phases have less structural deviation from the parent fluorite structure and thus may be responsible for the overall radiation tolerance. The high K+ occupancy at pyrochlore A sites in KLuTa2O7 is believed to contribute to the decrease of radiation tolerance, consistent with the large ionic radius ratio of K+/Ta5+. These results highlight that the radiation tolerance of nanostructured materials is highly compositional dependent, and nano-sized tantalate pyrochlores are sensitive to radiation damage.

Copyright

References

Hide All
1. Ewing, R.C., Weber, W.J., and Lian, J., J. Appl. Phys. 95, 5949 (2004).
2. Raison, P.E., Haire, R.G., Sato, T., and Ogawa, T., Mater. Res. Soc. Symp. Proc. 556, 3 (1999).
3. Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V.G., J. Mater. Res. 14, 4470 (1999).
4. Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M., and Ewing, R.C., Phys. Rev. B 66, 054108(2002).
5. Lian, J., Chen, J., Wang, L.M., Ewing, R.C., Farmer, J.M., Boatner, L.A., and Helean, K.B., Phys. Rev. B 68, 134107 (2003).
6. Patel, M.K., Vijayakumar, V., Avasthi, D.K., Kailas, S., Pivin, J.C., Grover, V., Mandal, B.P., and Tyagie, A.K., Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2898 (2008).
7. Zhang, Z.L., Xiao, H.Y., Zu, X.T., Gao, F., and Weber, W.J., J. Mater. Res. 24, 1335 (2009).
8. Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., and Hartmann, T., Science 289, 748 (2000).
9. Zhang, J., Lian, J., Fuentes, A., Zhang, F.X., Lang, M., Lu, F.Y., and Ewing, R.C., Appl. Phys.Lett. 94, 243110 (2009).
10. Nyman, M., Rodriguez, M.A., Shea-Rohwer, L.E., Martin, J.E., and Provencio, P.P., J. Am. Chem. Soc. 131, 11652(2009).
11. Wang, S.X., Wang, L.M., and Ewing, R.C., Mater. Res. Soc. Symp. Proc. 504, 165 (1998).
12. Wang, S.X., Wang, L.M., and Ewing, R.C., Phys. Rev. B 63, 024105 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed