Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T01:51:58.705Z Has data issue: false hasContentIssue false

Ion Beam Induced Growth Structure of Fluorite Type Oxide Films for Biaxially Textured htsc Coated Conductors

Published online by Cambridge University Press:  15 March 2011

Y. Iijima
Affiliation:
Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512, JAPAN, ijm@rd.fujikura.co.jp
M. Kimura
Affiliation:
Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512, JAPAN
T. Saitoh
Affiliation:
Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512, JAPAN
Get access

Abstract

Biaxially aligned film growth by dual-ion-beam sputtering method were studied for fluorite type (Zr0.85Y0.15O1.93(YSZ), Hf0.74Yb0.26O1.87, CeO2), pyrochlore type (Zr2Sm2O7), and rare-earth C type (Y2O3, Sm2O3) oxides on polycrystalline Ni-based alloy substrates. Cube-textured (all axes aligned with a <100> axis substrate normal) films were obtained for fluorite and pyrochlore ones by low energy (<300 eV) ion bombardment at low temperatures (< 300 °C). Besides, cube textured Y2O3 films were obtained in far narrow conditions with a quite low energy (150 eV)-ion bombardment at the temperature of 300°C. The assisting ion energy dependence was discussed in connection with lattice energies for these oxide crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, Y., Onabe, K., Futaki, N., Tanabe, N., Sadakata, N., Kohno, O., and Ikeno, Y., IEEE Trans Appl. Supercond. 3, 1510 (1993).Google Scholar
2. Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., J. Mater Res. 13, 3106 (1998)Google Scholar
3. Foltyn, S. R., Arendt, P. N., Dowden, C., DePaula, R. F., Groves, J. R., Coulter, J. Y., Jia, Q., Maley, M. P., and Peterson, D. E., to be published in IEEE Trans. Appl. Supercond. 9, (1999).Google Scholar
4. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., and Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997).Google Scholar
5. Hosaka, M., Iijima, Y., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., Advances in Superconductivity vol. 9, ed. Nakajima, S. and Murakami, M., p.749, Springer, Tokyo, 1997 Google Scholar
6. Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R., Handbook of Ion-Beam Processing Technology, p.170, Noyes, New Jersey, 1989.Google Scholar
7. Zhu, S., Lowndes, D. H., Budai, J. D., and Norton, D. P., Appl. Phys. Lett. 65, 2012 (1994)Google Scholar
8. Betz, V., Holzapfel, B., Raouser, D., and Schultz, L., Appl. Phys. Lett. 71, 2952 (1997)Google Scholar
9. Iijima, Y., Kimura, M., Tanabe, N., Sadakata, N., Saitoh, T., and Takeda, K.: Advances in Superconductivity, Vol. 11, eds. Koshizuka, N. and Tajima, S., p.785, Springer, Tokyo, 1999 Google Scholar
10. Morss, L.R., Chem. Rev., 76, 827 (1976)Google Scholar
11. Wagmann, D.D. et al. , NBS Technical Note 270, Selected Values of Chemical Thermodynamic Properties, (U.S. Gov. Printing Office,1981)Google Scholar
12. Moore, C.E., Analysis of Optical Spectra, WSRDS-NBS 34, (National Bureau of Standards, 1971)Google Scholar
13. Resslar, K. G., Sonnenberg, N., and Cima, M. J.: J. Am. Ceram. Soc. 80, 2637 (1997).Google Scholar