Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T00:18:34.551Z Has data issue: false hasContentIssue false

Ion Beam Assisted Quantum well Intermixing

Published online by Cambridge University Press:  21 February 2011

R. D. Goldberg
Affiliation:
Department of Physics, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
I. V. Mitchell
Affiliation:
Department of Physics, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
S. Charbonneau
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada.
P. Poole
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada.
E. S. Koteles
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada.
G. Aers
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada.
G. Weatherly
Affiliation:
Department of Materials Engineering and Metallurgy, McMaster University, Hamilton, L8S 4K1, Canada.
Get access

Abstract

Significant progress has been made in the past year in the use of high energy (MeV) ion irradiation to tune the bandgap and therefore emission wavelengths of single and multiple quantum well structures. These shifts are attributable to compositional mixing across the well and barrier layer interfaces, a process that is driven by the vacancy flux, released during the anneal stage, from radiation defects. We present data from a series of measurements in both GaAs- and InP-based QW structures to demonstrate the importance of the implantation parameters chosen (ion species, energy, flux, fluence and implant temperature). The dramatic difference in the response of these two systems with regard to the implant depth is believed to be associated with the very different diffusivities of the Gp III site vacancies. Prospects for implementing the irradiation approach as a spatially selective, planar process in integrated optoelectronic circuitry look very attractive and are illustrated for both passive and active components by reference to recent results from tuned wavelength lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Charbonneau, S., Poole, P. J., Piva, P. G., Aers, G. C., Koteles, E. S., Fallahi, M., He, J.-J., McCaffery, J. P., Buchanan, M., Dion, M., Goldberg, R. D. and Mitchell, I. V., J. Appl. Phys. 78(6), p. 3697 (1995).Google Scholar
2 Allard, L. B., Aers, G. C., Charbonneau, S., Jackman, T. E., Williams, R. L., Templeton, I. M., Buchanan, M., Stevanovic, D. and Almeida, J., J. Appl. Phys. 72(2), p. 422 (1992).Google Scholar
3 Deppe, D. G. and Holonyak, N., J. Appl. Phys. 64, p. R93 (1988).Google Scholar
4 Laidig, W. D., Holonyak, N. Jr., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett. 38(10), p. 776 (1981).Google Scholar
5 Ralston, J. D., O'Brien, S., Wicks, G. W. and Eastman, L. F., Appl. Phys. Lett. 52(18), p. 1511 (1988).Google Scholar
6 Deppe, D. G., Guido, L. J., Holonyak, H. Jr., Hsieh, K. C., Burnham, R. D., Thornton, R. L. and Paoli, T. L., Appl. Phys. Lett. 49(9), p. 510 (1986).Google Scholar
7 Koteles, E. S., Elman, B., Holmstrom, R. P., Melman, P., Superlatt. Microstruct. 5, p. 321 (1989).Google Scholar
8 Piva, P. G., Poole, P. J., Charbonneau, S., Koteles, E. S., Buchanan, M., Aers, G., Roth, A. P., Wasilewski, Z. R., Beauvais, J. and Goldberg, R. D., Superlattices and Microstructures, 15(4), p. 385 (1994).Google Scholar
9 Yamamura, S., Saito, R., Yugo, S., Kimura, T., Murata, M. and Kamiya, T., J. Appl. Phys. 75(5), p. 2410 (1994).Google Scholar
10 Bradley, I. V., Gillin, W. P., Homewood, K. P. and Webb, R. P., J. Appl. Phys. 73(4), p. 1686 (1993).Google Scholar
11 Kalish, R., Feldman, L. C., Jacobson, D. C., Weir, B. E., Merz, J. L., Kramer, L.-Y., Doughty, K., Stone, S. and Lau, K.-K., Nucí. Inst, and Meth. B80/81, p.729 (1993).Google Scholar
12 Poole, P. J., Charbonneau, S., Dion, M., Aers, G. C., Buchanan, M., Goldberg, R. D. and Mitchell, I. V., accepted for publication in Photonics Technology Letters, Jan. 1996.Google Scholar
13 He, J.-J., Koteles, E. S., Poole, P. J., Davis, M., Goldberg, R., Mitchell, I., submitted to Electronic Letters, Sept. 1995.Google Scholar
14 Charbonneau, S., Poole, P. J., Feng, Y., Aers, G. C., Dion, M., Davies, M., Goldberg, R. D. and Mitchell, I. V., Appl. Phys. Lett. 67(20), p. 2954 (1995).Google Scholar
15 Charbonneau, S., Poole, P. J., Piva, P. G., Buchanan, M., Goldberg, R. D. and Mitchell, I. V., accepted for publication in Nucl. Inst. and Meth. 1995.Google Scholar
16 Poole, P. J., Buchanan, M., Aers, G., Wasilewski, Z. R., Dion, M., Fallahi, M., He, J.-J., Charbonneau, S., Koteles, E. S., Mitchell, I. V. and Goldberg, R. D., presented at SPIE conference on WDM components, San Jose, February, 1995.Google Scholar
17 Poole, P. J., Charbonneau, S., Aers, G. C., Jackman, T. E., Buchanan, M., Dion, M., Goldberg, R. D. and Mitchell, I. V., J. Appl. Phys. 78(4), p. 2367 (1995).Google Scholar
18 Poole, P. J., Charbonneau, S., Dion, M., Feng, Y., He, J.-J., Koteles, E. S., Mitchell, I. V. and Goldberg, R. D., presented at SPIE East, Oct. 1995.Google Scholar
19 Tan, H. H., Williams, J. S., Jagadish, C., Burke, P. T. and Gal, M., submitted to Applied Physics Letters 1995.Google Scholar
20 Tan, H. H., Jagadish, C. and Gal, M., to appear in Nucl. Inst. and Meth. 1995.Google Scholar
21 Lafontaine, H., Labrie, D., Goldberg, R. D., Houghton, D. C., Rowell, N. L., Aers, G. C., Charbonneau, S. and Mitchell, I. V., to be presented at MRS meeting, spring 1996.Google Scholar
22 Goldberg, R. D., Mitchell, I. V., Poole, P. J. and Charbonneau, S., to be published.Google Scholar
23 Johnson, S. T., Williams, J. S., Nygren, E. and Elliman, R. G., Mat. Res. Soc. Symp. Proc. 100, p. 423 (1988).Google Scholar
24 Williams, J. S. and Austin, M. W., App. Phys. Lett. 36, p. 994 (1980).Google Scholar
25 Williams, J. S., Tan, H. H., Goldberg, R. D., Brown, R. A. and Jagadish, C., Mat. Res. Soc. Symp. Proc. 316, p. 15 (1994).Google Scholar