Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T21:27:30.672Z Has data issue: false hasContentIssue false

Investigations on the Electrochemical Behavior of Zr-Al-Cu-Ni Bulk Metallic Glass

Published online by Cambridge University Press:  10 February 2011

K. Buchholz
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 27 00 16, D-01171 Dresden, Germany
A. Gebert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 27 00 16, D-01171 Dresden, Germany
K. Mummert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 27 00 16, D-01171 Dresden, Germany
J. Eckert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 27 00 16, D-01171 Dresden, Germany
L. Schultz
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 27 00 16, D-01171 Dresden, Germany
Get access

Abstract

The passivation behavior of bulk glassy Zr55Al10Cu30Ni5 alloy samples in weakly alkaline sulphate solution (pH = 8) is investigated in comparison to the arc-melted crystalline alloy, to the main alloying component zirconium and to aluminium. Results of potentiodynamic and potentiostatic polarization measurements reveal the formation of a stable passivating surface film on the glassy alloy grown by a high-field mechanism. Auger electron spectroscopic investigations of anodized sample surfaces show that the films formed on the glassy Zr-Al-Cu-Ni alloys exhibit a composition gradient in cross-sectional direction. In 0.001M NaCl electrolytes bulk glassy Zr-Al- Cu-Ni samples are susceptible to pitting corrosion, which is due to the existence of crystalline inclusions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Masumoto, T., Sci. Rep. RITU A39, 91 (1994).Google Scholar
2. Köster, U. and Alves, H., Proceedings (Supplement) RQ 9 Bratislava 1997, eds. Duhaj, P., Mrafko, P., Svec, P., ELSEVIER Amsterdam-Oxford-New York-Tokyo, 1997.Google Scholar
3. Janik-Czachor, M., Corrosion 49, 763 (1993).Google Scholar
4. Janik-Czachor, M., Wolowik, A., Szummer, A., Lubliñska, K., Hofirann, S. and Kraus, K., Electrochimica Acta 43, 875 (1998).Google Scholar
5. Gebert, A., Eckert, J., Bauer, H.-D. and Schultz, L., Mater. Sci. Forum 269–272, 797 (1998).Google Scholar
6. Gebert, A., Buchholz, K., Leonhardt, A., Mummert, K., Eckert, J. and Schultz, L., Proceedings of the 5th Int. Symposium on Electrochemical /Chemical Reactivity of Novel Materials, Sendai 1998, to be published in Mater. Sci. Eng. A.Google Scholar
7. Gebert, A., Mummert, K., Eckert, J., Schultz, L. and Inoue, A., Materials and Corrosion 48, 293 (1997).Google Scholar
8. Lohrengel, M.M., Mater. Sci. Eng. R11, 243 (1993).Google Scholar
9. Cabrera, N. and Mott, N.F., Rep. Pogr. Phys. 12, 163 (19481949).Google Scholar
10. Schroeder, V., Gilbert, C.J. and Ritchie, R.O., Scripta Materialia 38, 1481 (1998).Google Scholar