Skip to main content Accessibility help
×
Home

Investigation of the Transport Mechanism in Doped La-Based Manganite Thin Films by Traveling Wave Method

  • L. Wang (a1), S. Huang (a1), J. Yin (a1), X. Huang (a1), J. Xu (a1), Z. Liu (a1) and K. Chen (a1)...

Abstract

The traveling wave (TW) method has been utilized to investigate the transport mechanism in paramagnetic-insulator state of La0.75Sr0.11Ca0.14MnO3 films. The drift mobility of the films increased from 2.5 × 10−2 cm2/Vs at 310 K to about 9.2 × 10−2 cm2/Vs at 400 K. The Arrhenius behaviors of the conductivity and drift mobility indicate that the transport process in manganites above the Curie temperature is dominated by the thermally assisted hopping of small polarons.

Copyright

References

Hide All
1. Jonker, J. H. and Santen, J. H. Van, Physica (Amsterdam) 16, p. 599 (1950).
2. Jin, S., McCormack, M., Fastnach, R. A., Ranesh, R. and Chen, L. H., Science 264, p. 413 (1994).
3. Helmholt, R. Von, Wecker, J., Holzaptel, B., Schultz, L. and Samwer, K., Phys. Rev. Lett. 71, p. 2331 (1993).
4. Majumdar, P. and Littlewood, P. B., Nature (London) 395, p. 479 (1998)
5. Mathews, S., Ramesh, R., Venkantesan, T., Benedetto, J., Science 276, p. 238(1997)
6. , Zener, Phys. Rev. 82, p. 403 (1951).
7. Millis, J., Littlewood, P. B. and Shraiman, B. I., Phys. Rev. Lett. 74, p. 5144 (1995).
8. Röder, H., Zhang, J. and Bishop, A. R., Phys. Rev. Lett. 76, p. 1356 (1996).
9. Kaplan, S. G. et al. , Phys. Rev. Lett. 77, p. 2081 (1996).
10. Teresa, J. M. De et al. , Nature (London) 386, p. 256 (1997)
11. Jaime, M., Salamon, M.B., Rubinstein, M., Treece, R. E., Horwitz, J. S. and Chrisey, D. B., Phys. Rev. B 54, p. 11914 (1996)
12. Jaime, M., Hardrer, H. T., Salamon, M. B., Rubinstein, M., Dorsey, P. and Emin, D., Phys. Rev. Lett. 78, p. 951 (1997).
13. Palstra, T. T. M., Ramirez, A.P., Cheong, S-W., Zegarski, B. R., Schifer, P. and Zannen, J., Phys. Rev. B 56, p. 5104 (1997).
14. Matl, P., Ong, N. P., Yan, Y F., Li, Y. Q., Studebaker, D., Baum, J. and Doubinina, G., Phys. Rev. B 57, p. 10248 (1998).
15. Snyder, G. J., Beasley, M. R. and Geballe, T. H., Appl. Phys. Lett. 69, p. 4254 (1996).
16. Adler, R., James, D., Hunsinger, B. J. and Datta, S., Appl. Phys. Lett. 38, p. 102 (1981).
17. Fritzsche, H. and Chen, K. J., Phys. Rev. B 28, p. 4900 (1983).
18. Chen, K. J. and Fritzsche, H., J. Non-cryst. Solid, 59&60, p. 441 (1983).
19. Jahanson, Robert E., Phys. Rev. B 45, p. 4089 (1992).
20. Yin, J., Gao, X. S., Liu, Z. G., Zhang, Y. X., Liu, X. Y., Appl. Surf. Sci. 141, p. 21 (1999)
21. Auld, A., Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol.2
22. Alexandrov, A. S. and Bratkovsky, A. M., Phys. Rev. Lett. 82, p. 141 (1999)
23. Emin, D., Ann. Phys. (N. Y) 53, p. 439(1969)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed