Skip to main content Accessibility help
×
Home

Investigation of the thermoelectric properties of the PbTe-SrTe system

  • Kanishka Biswas (a1), Jiaqing He (a2), Qichun Zhang (a3), Guoyu Wang (a4), Ctirad Uher (a5), Vinayak P Dravid (a6) and Mercouri Kanatzidis (a7)...

Abstract

PbTe-based materials are promising for efficient heat energy to electricity conversion. We present studies of the thermoelectric properties of the PbTe-SrTe system. X-ray diffraction patterns reveal that all the samples crystallize in the rock salt structure without noticeable secondary phase. Na2Te doping of the PbTe-SrTe materials resulting in a positive sign Hall coefficient indicating p-type conduction. Lattice thermal conductivity is significantly decreased with the insertion of SrTe in PbTe lattice. The ZT ∼ 1.3 of these materials is derived from their very low thermal conductivities and reasonably high power factor at 800 K.

Copyright

References

Hide All
1 Chen, G., Dresselhaus, M. S. Dresselhaus, G. Fleurial, J. P. and Caillat, T. Int. Matter. Rev. 48, 4566 (2003).
2 Rowe, D. M. CRC Handbook of Thermoelectrics: Macro to Nano (CRC Press/Taylor & Francis, Boca Raton, 2006).
3 Snyder, J. G. and Toberer, E. S. Nature Mater. 7, 105114 (2008).
4 Sootsman, J. Chung, D. Y. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 48, 86168639 (2009).
5 Kanatzidis, M. G. Chem. Mater. 22, 648659 (2010).
6 Heremans, J. P. Jovovic, V. Toberer, E. S. Saramat, A. Kurosaki, K. Charoenphakdee, A. Yamanaka, S. and Snyder, G. J. Science 321, 554557 (2008).
7 Ahmad, S. Hoang, K. and Mahanti, S. D. Phys. Rev. Lett. 96, 56403 (14) (2006).
8 Sootsman, J. R. Kong, H. Uher, C. D'Angelo, J. J., Wu, C. I. Hogan, T. P. Caillat, T. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 47, 86188622 (2008).
9 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818821 (2004).
10 Androulakis, J. Hsu, K. F. Pcionek, R. Kong, H. Uher, C. D'angelo, J. J., Downey, A. Hogan, T. and Kanatzidis, M. G. Adv. Mater. 18, 11701173 (2006).10.1002/adma.200502770
11 Poudeu, P. F. P. D'Angelo, J., Downey, A. D. Short, J. L. Hogan, T. P. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 45, 38353839 (2006).
12 Poudeu, P. F. P. Guéguen, A., Wu, C. I. Hogan, T. Kanatzidis, M. G. Chem. Mater. 22, 10461053 (2010).
13 Androulakis, J. Lin, C. H. Kong, H. J. Uher, C. Wu, C. I. Hogan, T. Cook, B. A. Caillat, T. Paraskevopoulos, K. M. and Kanatzidis, M. G. J. Am. Chem. Soc. 129, 97809788 (2007).
14 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D. Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320, 634638 (2008)
15 Allgaier, R. S. Houston, B. B. Jr. , J. Appl. Phys. 37, 302-309 (1966).
16 Partin, D. L. Thrush, C. M. Clemens, B. M. J. Vac. Sci. Technol. B5, 686689 (1987).
17 Ravich, Y. I. Efimova, B. A. Smirnov, I. A. Semiconducting Lead Chalcogenides (Plenum, New York, vol 5, 1970).10.1007/978-1-4684-8607-0

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed