Skip to main content Accessibility help

Investigation of Photon Redistribution in High Temperature Photonic Crystal Structures

  • Weijun Zhao (a1), Rana Biswas (a1), Irina Puscasu (a2), Anton Greenwald (a3) and Edward Johnson (a4)...


We have simulated the angle-dependent absorption and thermal emittance of two dimensional metallic and metallodielectric photonic crystals (PCs) with rigorous scattering matrix methods- where Maxwell's equations are solved in Fourier space. These metallic photonic crystals exhibit strong thermal emittance and absorption peaks in the normal direction. This peak splits into multiple peaks at larger and shorter wavelengths away from the normal direction. The thermal emission at different wavelengths is redistributed into different emission angles. There is partial suppression of photon emission at long wavelengths and enhancement at the shorter wavelength spectral range where the thermal emittance has a maximum. Angle-dependent measurements of the emission in metallo-dielectric photonic crystals are performed. Simulations compare well with these measurements and are consistent with the surface plasmon model. The strong dependence of the absorption with angle is very important for thermo-photovoltaic devices.



Hide All
[1] Lin, S.Y. Fleming, J.G. and El-Kady, I., Opt. Lett. 28, 1909 (2003).
[2] Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. Johnson, E. Biswas, R. and Ding, C. G., J. Appl. Phys. 98, 13531 (2005).
[3] El-Kady, I., Chow, W. W. Fleming, J. Phys. Rev. B 72, 195110 (2005).
[4] Biswas, R. Ding, C.G. Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. and Johnson, E., Phys. Rev. B. 74, 045107 (2006).
[5] Lin, S. Y. Moreno, J. and Fleming, J. G. Appl. Phys. Lett. 83, 380 (2003).
[6] Sai, H. Yugami, H. Appl. Phys. Lett. 85, 3399 (2004).
[7] Jovanoviæ, N., Éelanoviæ, I., and Kassakian, J. AIP Conf. Proc. 890, 47 (2007).
[8] Florescu, M. Lee, H. Puscasu, I. Pralle, M. Florescu, L. Ting, D. Z. Dowling, J. P. Solar Energy Materials and Solar Cells 91, 1599 (2007).
[9] Fleming, J. Lin, S. El-Kady, I., Biswas, R. and Ho, K. M. Nature 417, 52 (2002).
[10] Biswas, R. Zhou, D. Puscasu, I. Johnson, E. Taylor, A. and Zhao, W. Appl. Phys Lett. 93, 063307 (2008).
[11] Lee, J.H. Kim, C.H. Kim, Y-S. Ho, K.M. Constant, K. and Oh, C.H. Appl. Phys. Lett. 88, 181112 (2006).
[12] Li, Z. Y. and Lin, L. L. Phys. Rev. E 67, 046607 (2003).
[13] Biswas, R. Neginhal, S. Ding, C. G. Puscasu, I. Johnson, E. J. Opt. Soc. of America B 24, 2489 (2007).
[14] Siegel, R. and Howell, J. R. Thermal Radiation Heat Transfer – 4th ed., Taylor & Francis, 2002.
[15] Luo, C. Narayanaswamy, A. Chen, G. and Joannopoulos, J. D. Phys. Rev. Lett. 93, 213905 (2004).
[16] Raether, H. Surface Plasmons, Springer Tracts in Modern Physics, vol. 111, Springer-Verlag, Berlin, 1988.
[17] El-Kady, I., Biswas, R. Ye, Y. Su, M. F. Puscasu, I. Pralle, M. Johnson, E.A. Daly, J. and Greenwald, A., Photonics and Nanostructures – Fundamentals and Applications 1, 69 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed