Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T12:11:31.181Z Has data issue: false hasContentIssue false

Investigation of Passivation Effects in InP Hemt Layers

Published online by Cambridge University Press:  15 February 2011

M. Van Hove
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium, vanhove @imec.be
J. Finders
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium, vanhove @imec.be
K. Van Der Zanden
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium, vanhove @imec.be
J. Geurts
Affiliation:
I. Phys. Institut, Aachen University of Technology, Sommerfeldstraße 28, D-52056 Aachen, Germany, geurts @ acdslO.physik.rwth-aachen.de
M. Van Rossum
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium, vanhove @imec.be
Get access

Abstract

We have investigated the influence of the deposition of a passivating silicon nitride layer on the electron transport in InAlAs/InGaAs/InAlAs quantum wells capped with a thin InGaAs layer. This structure is grown by Molecure Beam Epitaxy lattice-matched on InP substrates for the fabrication of High Electron Mobility Transistors. The InGaAs cap layer is added to reduce the ohmic contact resistance. In a first step to illuminate the complicated structural changes involved when passivating fully processed devices, we studied the influence of silicon nitride layer deposition on the virgin epilayers. The electrical transport properties were characterised by resistance, mobility, carrier concentration and magnetoresistance measurements, while Raman spectroscopy was used to probe the vibrational properties which are influenced by the free carriers. Because of the small penetration depth of the laser light mainly the lattice vibrations in the InGaAs ohmic contact layer were observed in the Raman spectra. Before passivation this thin highly doped cap layer is depleted, as confirmed by magnetoresistance measurements, that show a single conducting path in the two-dimensional electron gas formed in the InAlAs/InGaAs/InAlAs QW, and only bulk-like InGaAs phonons are observed in the cap layer. After passivation a shift to lower frequencies of the GaAs-like mode indicates a high electron concentration in the InGaAs cap. The results of the Raman analysis are in good agreement with the electrical transport data that show a considerably lower resistance after passivation. Magnetoresistance measurements on passivated layers confirmed the creation of an additional conducting path in the InGaAs cap layer introduced by the silicon nitride deposition process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nguyen, L. D., Brown, A. S., Thompson, M. A., Jelloian, L. M., IEEE Trans. Electron Devices ED-39, 2007 (1992).Google Scholar
2. Nguyen, L. D., Larson, L. E., Mishra, U. K., Proc. of the IEEE 80, 494 (1992).Google Scholar
3. Baeyens, Y., Hove, M. Van, Raedt, W. De, Schreurs, D., Nauwelaers, B., Rossum, M. Van, in Proc. of ESSDERC '94, edited by Hill, C. and Ashburn, P. (Editions Frontières, Gif-sur-Yvette, France, 1992), p. 803807.Google Scholar
4. Hove, M. Van, Finders, J., Zanden, K. van der, Raedt, W. De, Rossum, M. Van, Baeyens, Y., Schreurs, D., Nauwelaers, B., Zeng, A., Jackson, M. K., in Proc. of SOTAPOCS XXIII, edited by Ren, F., Pearton, S. J., Chi, G. C., Buckley, D. N., Daele, P. Van, Kamijoh, T. and Schuermeyer, F. (Electrochem. Soc. Proc. 95–21, Pennington, NJ, 1995), p. 395407.Google Scholar
5. Chen, K. J., Maezawa, K., Arai, K., Yamamoto, M., Enoki, T., Electronics Lett. 31, 925 (1995).Google Scholar
6. Hasegawa, H., Ohno, H., J. Vac. Sci. Technol. B4, 1130 (1986).Google Scholar
7. Syphers, D. A., Martin, K. P., Higgins, R. J., Appl. Phys. Lett. 49, 534 (1986).Google Scholar
8. Burgt, M. van der, Karavolas, V. C., Peeters, F. M., Singleton, J., Nicholas, R. J., Herlach, F., Harris, J. J., Hove, M. Van, Borghs, G., Phys. Rev. B, in print.Google Scholar
9. Pearsall, T. P., Charles, R., Portal, J. C., Appl. Phys. Lett. 42, 436 (1983).Google Scholar
10. Mowbray, D. J., Hayes, W., Taylor, L. L., Bass, S. J., Semicond. Sci. Technol. 5, 83 (1990).Google Scholar
11. Hasegawa, H., Akazawa, M., Matsuzaki, K., Ishii, H., Ohno, H., Jpn. J. Appl. Phys. 27, L2265 (1988).Google Scholar
12. Lee, D. H., Li, S.S., Sauer, N. J., Chang, T.Y., Appl. Phys. Lett. 54, 1863 (1989).Google Scholar
13. Bartynski, R. A., Geelhaar, L., Ren, F., Buckley, D. N., in Proc. of SOTAPOCS XXIII, edited by Ren, F., Pearton, S. J., Chi, G. C., Buckley, D. N., Daele, P. Van, Kamijoh, T. and Schuermeyer, F. (Electrochem. Soc. Proc. 95–21, Pennington, NJ, 1995), p. 337345.Google Scholar
14. Nelson, A. J., Frigo, S. P., Rosenberg, R. A., in Surface Chemical Cleaning and Passivation for Semiconductor Processing, edited by Higasi, G. S., Irene, E. A., and Ohmi, T. (Mat. Res. Soc. Proc. 315, Pittsburgh, PA, 1993), pp. 181187.Google Scholar
15. Shei, S. C., Su, Y. K., Hwang, C. J., Yokohama, M., Jpn. J. Appl. Phys. 34, 476 (1995).Google Scholar
16. Jeong, Y. H., Jo, S. K., Lee, B. H., Sugano, T., IEEE El. Dev. Lett. 16, 109 (1995).Google Scholar
17. Herman, J. S., Terry, F. L., Appl. Phys. Lett. 60, 716 (1992).Google Scholar
18. Tiwari, S., Wright, S. L., Batey, J., IEEE El. Dev. Lett. 9,488 (1988).Google Scholar
19. Jiménez, I., Palomares, F. J., Avila, J., Cuberes, M. T., Soria, F., Sacedón, J. L., Horn, K., J. Vac. Sci. Technol. A1, 1028 (1993).Google Scholar
20. Fountain, G. G., Hattangady, S. V., Vitkavage, D. J., Rudder, R. A., Markunas, R. J., Electronics Lett. 24, 1134 (1988).Google Scholar
21. Fountain, G. G., Hattangady, S. V., Rudder, R. A., Markunas, R. J., Lucovsky, G., Kim, S. S., Tsu, D. V., J. Vac. Sci. Technol. A7, 576 (1989).Google Scholar
22. Shei, S. C., Su, Y. K., Hwang, C. J., Yokoyama, M., Jpn. J. Appl. Phys. 34, 476 (1995).Google Scholar