Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T21:34:13.632Z Has data issue: false hasContentIssue false

Investigation of magnetic properties in Mn incorporated InSb, InP, and GaAs, synthesized through controlled-ambient annealing

Published online by Cambridge University Press:  21 March 2011

Joel Hollingsworth
Affiliation:
Materials Science Program, Mechanical & Aerospace Engineering department, U.C. San Diego, La Jolla, CA, 92093
Prabhakar Bandaru
Affiliation:
Materials Science Program, Mechanical & Aerospace Engineering department, U.C. San Diego, La Jolla, CA, 92093
Get access

Abstract

Magnetic semiconductors are of interest for emerging spintronic applications, such as the integration of electronic information processing with magnetic data storage. We report on a new approach - furnace annealing under controlled ambients – aimed at increasing Mn incorporation and synthesizing new magnetic semiconductors with Tc greater than/around room temperature. These annealing treatments are hypothesized to reduce the effect of Mn interstitials. We have obtained preliminary SQUID magnetometry results which indicate ferromagnetic Curie temperatures of around 130 K in (In,Mn) Sb and 60 K in (In, Mn)P. X-ray diffraction was used to characterize phase homogeneity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohno, H., Science, 281, 951 (1998).Google Scholar
2. Park, Y. D. et al. , Science, 295, 651 (2002).Google Scholar
3. Datta, S., and Das, B., Appl. Phys. Lett., 56, 665 (1990).Google Scholar
4. Gregg, J.F. et al. , J. Phys. D, 35, R121, (2002).Google Scholar
5. Sousa, R. de and Sarma, S. Das, Phys. Rev. B, 67, 033301 (2003)Google Scholar
6. Chiba, D., Yamanouchi, M., Matsukura, F., , F., and Ohno, H., Science 301, 943 (2003).Google Scholar
7. Dietl, T. et al. , Science, 287, 1019 (2000).Google Scholar
8. Takahashi, M., and Kubo, K., LANL archives, arxiv:cond-mat/0204124 (2002).Google Scholar
9. Walukiewicz, W., Appl. Phys. Lett., 54, 2094 (1989).Google Scholar
10. Kawakami, R. et al. , Appl. Phys. Lett., 77, 2379 (2000).Google Scholar
11. Blinowski, J., and Kacman, P., Phys. Rev. B, 67, 121204–1 (2003).Google Scholar
12. Yu, K.M. et al. , Phys. Rev. B, 65, 201303 (R), (2002).Google Scholar
13. Chiba, D. et al. , Appl. Phys. Lett., 82, 3020 (2003).Google Scholar
14. Potashnik, S.J. et al. , Appl. Phys. Lett., 79, 1495 (2001).Google Scholar
15. Wu, C.H. and Hsieh, K.C., J. Appl. Phys., 72, 5642 (1992).Google Scholar
16. Yu, S., Tan, T.Y., and Gosele, U., J. Appl. Phys., 70, 4827 (1991).Google Scholar
17. -Han, S.J. et al. , Appl. Phys. Lett., 83, 920 (2003).Google Scholar
18. Linnarsson, M. et al. , Phys. Rev. B, 55, 6938, (1997).Google Scholar
19. Shoon, Y. et al. , Appl. Phys. Lett., 84, 2310 (2004).Google Scholar
20. Wojtowicz, T. et al. , Appl. Phys. Lett., 82, 4316 (2003).Google Scholar
21. West, A.R., Solid State Chemistry and its Applications, John Wiley, New York, (1992).Google Scholar
22. Schubert, E. F., Doping in III-V Semiconductors, Cambridge Univ. Press, (1993).Google Scholar
23. Seltzer, M.S., J. Phys. Chem. Solids, 26, 243, (1965).Google Scholar
25. Sarma, S. Das, Hwang, E.H., and Kaminski, A., Phys. Rev. B, 67, 155201, (2003).Google Scholar