Skip to main content Accessibility help

Investigation of Local Coordination and Electronic Structure of Dielectric Thin Films from Theoretical Energy-Loss Spectra

  • Manish K. Singh (a1), Javier Rosado (a2), Rajesh Katamreddy (a3), Anand Deshpande (a4) and Christos G. Takoudis (a5)...


Quantum mechanical simulations were performed to calculate the valence electron energy-loss spectra (VEELS) for hafnium oxide, hafnium silicate, silicon oxide and silicon systems using the full potential Linearized Augmented Plane Wave (LAPW) formalism within the Density Functional Theory (DFT) framework. The needed energy-loss function (ELF) was derived from the calculation of the complex dielectric tensor within the random phase approximation (RPA). The calculated spectra were compared with experimental scanning transmission electron microscopy (STEM)/EELS of atomic layer deposited (ALD) HfO2 on Si(100) to evaluate their use as a “fingerprint” method that can be used to distinguish among various polymorphs of HfO2 thin films and relate the fine structure to the electronic structure and local bonding environment. Calculated low-loss spectra are found to be in satisfactory agreement with experimental data. Also, the combination of such theoretical calculations and experimental data could be of key importance in our understanding of fundamental issues of these systems. Compared to energy-loss near edge structure (ELNES) or core energy-loss spectra, the ELF calculated for low-loss spectra is computationally less expensive and can prove useful for prompt analysis.



Hide All
1. Wilk, G. D., Wallace, R. M. and Anthony, J. M., J. Appl. Phys. 89 (10), 5243 (2001).
2. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, New York 1996).
3. Pennycook, S. J., Jesson, D. E., McGibbon, A. J., and Nellist, P. D., J. Electron Microsc. (Tokyo) 45 (1), 36 (1996).
4. Pennycook, S. J., Browning, N. D., McGibbon, M. M., McGibbon, A. J., Jesson, D. E. and Chisholm, M. F. Phil. Trans. R. Soc. A 354 (1719), 2619 (1996)
5. Erni, R. and Browning, N. D., Ultramicroscopy 104 (3-4) 176 (2005).
6. Deshpande, A., Inman, R., Jursich, G. and Takoudis, C. G., J. Vac. Sci. & Technol. A, 22 (5), 2035 (2004).
7. Deshpande, A., Inman, R., Jursich, G. and Takoudis, C. G., J. Appl. Phys. 99 (9), 094102 (2006).
8. James, E.M. and Browning, N.D., Ultramicroscopy 78 (1-4), 125 (1999).
9. James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Electron Microsc. (Tokyo), 47 (6), 561 (1998).
10. Browning, N. D., Chisholm, M. F. and Pennycook, S. J., Nature 366 (6451), 143 (1993).
11. Jesson, D. E. and Pennycook, S. J. Proc. R. Soc. London, Ser. A 449, 273 (1995).
12. Ashcroft, N. W. and Mermin, N. D., Solid State Physics, (Thomson Learning, Toronto, 1976).
13. Blaha, Peter, Schwarz, Karlheinz, Madsen, Georg K. H., Dieter Kvasnicka and Joachim Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2002, Techn. Universität Wien, Austria.
14. Ambrosch-Draxl, C. and Sofo, J.O., Los Alamos National Laboratory, Preprint Archive, Condensed Matter, arXiv:cond-mat/0402523 1 (2004).
15. Ambrosch-Draxl, C. and Sofo, J.O., Comput. Phys. Commun. 175 (1), 1 (2006).
16. Ikarashi, N. and Manabe, K., J. Appl. Phys. 94 (1), 480 (2003).
17. Jin, H., Oh, S. K., Kang, H. J. and Tougaard, S., J. Appl. Phys. 100, 083713 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed