Skip to main content Accessibility help
×
Home

Investigation of Diblock Copolymer thin film Morphology for Nanolithography

  • Miri Park (a1), Christopher Harrison (a1), Paul M. Chaikin (a1), Richard A. Register (a2), Douglas Adamson (a3) and Nan Yao (a3)...

Abstract

The microphase separated morphology of diblock copolymers can be used to generate well-ordered nanometer scale patterns over a large area. To achieve this goal, it is important to understand and control the behavior of diblock copolymer thin films on substrates, which can differ from the bulk behavior. We have investigated the morphologies and ordering in thin polystyrene-polybutadiene (PS-PB) diblock copolymer films on bare silicon and silicon nitride substrates, and also on polymethylmethacrylate (PMMA) coated substrates. The PS-PB copolymers are synthesized to form, in bulk, PB cylinders or spheres in a PS matrix. In thin films (10–60 nm thick), prepared by spin-coating, we observe that the morphology and ordering of the microdomains are affected by strong wetting constraints and a reduced chain mobility on the substrate. The thinnest self-assembled layer of the copolymer films shows no in-plane microphase separation on both types of substrates. The PS blocks wet the PMMA substrates whereas the PB blocks wet the bare substrates as well as the air interface. Hence, different film thicknesses are necessary on the two types of substrates to obtain a uniform film of the first self-assembled cylindrical or spherical microdomain layer. The first layer of the cylindrical copolymer can vary from cylindrical to spherical morphology with a few nanometer decrease in film thickness. In the case of spherical PS-PB diblock copolymer films, we observe that the ordering of the microdomains is improved in the films on the PMMA substrates, compared to those on the bare substrates. We also demonstrate a successful transfer of the microdomain patterns to silicon nitride substrates by a reactive ion etching technique.

Copyright

References

Hide All
1 Bates, F. S., Science, 251, 898 (1991);
Bates, F. S. and Fredrickson, G. H., Ann. Rev. Phys. Chem., 41, 525 (1990).
2 Mansky, P., Chaikin, P., and Thomas, E.L., J. Mater. Sci., 30, 1987 (1995).
3 Mansky, P., Harrison, P. M., Chaikin, P. M., Register, R. A., and Yao, N., Appl. phys. Lett., 68, 2586 (1996).
4 Hofstadter, D., Phys. Rev. B, 14, 2239 (1976);
Thouless, D. J., Kohmoto, M., Nightingale, M. P. and den Nijs, M., Phys. Rev. Lett., 49, 405 (1982).
5 Weiss, D., Roukes, M. L., Menschig, A., Grambow, P., von Klitzing, K., and Weimann, G., Phys. Rev. Lett., 66, 2790 (1991).
6 Kang, W., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W., and West, K. W., Phys. Rev. Lett., 23, 3850 (1993).
7 Volkmuth, W. D. and Austin, R. H., Nature 358, 600 (1992);
Volkmuth, W. D., Duke, T., Wu, M. C, Austin, R. H., and Szabo, A., Phys. Rev. Lett., 72, 2117 (1994).
8 Kryder, M. H., Thin Solid films, 216, 174 (1992).
9 Radzilowski, L. H., Carvalho, B. L., and Thomas, E. L., preprint, submitted to J. Poly. Sci. B (July 1996).
10 Liu, Y., Rafailovich, M. H., Sokolov, J., Schwarz, S. A., and Bahal, S., Macromolecules, 29, 899 (1996).
11 Henkee, C. S., Thomas, E. L., and Fetters, L. J., J. Mater. Sci., 23, 1685 (1988).
12 Hasegawa, H. and Hashimoto, T., Polymer, 33, 475 (1992).
13 Thomas, E. L., Kinning, D. J., Alward, D. B., and Henkee, C. S., Macromolecules, 20, 2934 (1987).
14 Morton, M., Fetters, L. J., Rubber Chem. Technol, 48, 359 (1975).
15 An ellipsometer is used to measure the average thickness in samples with uniform thicknesses, whereas an interferometer with 1 μm probe size is used to measure the local thickness variations in samples with a non-uniform topography (i.e. islands or holes).
16 Silicon nitride windows have been previously used in TEM micrography instead of copper grids for specimen support. For example, see Morkved, T. L., Lu, M., Urbas, A. M., Ehrichs, E. E., Jaeger, H. M, Mansky, P., and Russell, T. P., Science, 273, 931 (1996). Having a continuous silicon nitride background reduces the resolution and contrast of the image, however on a 10 nm length scale it is not significant.
17 Sze, S. M., VLSI Technology. 2nd ed., McGraw-Hill, New York, 1988, pp. 184232.
18 Harrison, C. K., Park, M., Chaikin, P. M., Register, R. A., Adamson, D. H., and Yao, N., preprint, submitted to Polymer (July 1996).
19 Coulon, G., Ausserre, D., and Russell, T. P., J. Phys. France, 51, 777 (1990).
20 The microdomain orientation and ordering are sensitively dependent on film preparation. For example, see references 3 and 12.
21 Van Alsten, J. G., Sauer, B. B., and Walsh, D. J., Macromolecules, 25, 4046 (1992).
22 The RIE parameters used for the work presented in Figure 6 are 40 mTorr, 20 seem, 20W, ∼ 170 Vdc.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed