Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T21:20:38.487Z Has data issue: false hasContentIssue false

Investigation of Deep Level Defects in Mercuric Iodide by Thermally Stimulated Current Spectroscopy

Published online by Cambridge University Press:  26 February 2011

X.J. Bao
Affiliation:
Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, PA 15213
T.E. Schlesinger
Affiliation:
Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, PA 15213
R.B. James
Affiliation:
Sandia National Laboratories, Advanced Materials Division, Livermore, CA 94450
A.Y. Cheng
Affiliation:
EG&G Energy Measurcments, Inc., Goleta, CA 93116
C. Olrtale
Affiliation:
EG&G Energy Measurcments, Inc., Goleta, CA 93116
L. Van Den Berg
Affiliation:
EG&G Energy Measurcments, Inc., Goleta, CA 93116
Get access

Abstract

Mercuric iodide (HgI2) single crystals deposited with semitransparent Pd, Al and Ag contacts were studied by thermally stimulated current spectroscopy (TSC). Distinct differences were found among spectra obtained friom samples withdifferentmetal contacts, indicating that interactions between the metal contacts and mercuric iodide substrates have strong effects on the deep defect levels in mercuric iodide. The activation energies of some of these defect levels were estimated bytaking TSC spectra with different heating rates. In addition, a pyroelectric effect was observed in Ag-contactedsamplesbythermally stimulated depolarization current technique (TSDC). The implications of these results in device applicationsof mercuric iodide are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Malm, H.L., IEEE Trans. Nucl. Sci. NS–19, 263 (1972).CrossRefGoogle Scholar
2. Cain, S., Holzer, A., Beinglass, I., Schieber, M., and Lowenthal, E., IEEE Trans. Nucl.Sci. NS–25, 649 (1978).CrossRefGoogle Scholar
3. Patt, B.E., Beyerle, A.G., Dolin, R.C., and Ortale, C., Nucl. Instr. Meth. Phys. Res. A283, 215 (1989).CrossRefGoogle Scholar
4. Iwanszyk, J.S., Wang, Y.J., Bradley, J.G., Conley, J.M., Albee, A.L., and Economou, T.E., IEEE Trans. Nucl. Sci. 36, 841 (1989).CrossRefGoogle Scholar
5. Dabrowski, A.J., Szymczyk, W.M., Kusmiss, J.H., Drummond, W., and Ames, L., Nucl.Instr. Meth. 213, 89 (1983).CrossRefGoogle Scholar
6. Skinner, N.L., Ortale, C., Schieber, M.M., and van den Berg, L., Nucl. Instr. Meth.Phys. Res. A283, 119 (1989).CrossRefGoogle Scholar
7. Bao, X.J., Schlesinger, T.E., James, R.B., J. Appl. Phys. 67, 7265 (1990).CrossRefGoogle Scholar
8. James, R.B., Bao, X.J., Schlesinger, T.E., to be published.Google Scholar
9. Bao, X.J., Schlesinger, T.E., James, R.B., Gentry, G.L., Cheng, A.Y., and Ortale, C., J.Appl. Phys., in press.Google Scholar
10. Whited, R.C., and van den Berg, L., IEEE Trans. Nucl. Sci. NS–24, 165 (1977).CrossRefGoogle Scholar
11. Suryanarayana, P., and Acharya, H.N., J. Electr. Mat. 18, 481 (1989).CrossRefGoogle Scholar
12. Mohammad-Brahim, T., Friant, A., and Mellet, J., Phys. Stat. Sol.(a) 65, K1 (1981).CrossRefGoogle Scholar
13. Tadjine, A., Gosseline, D., Koebel, J.M., and Siffert, P., Nucl. Instr. Meth. 213, 77 (1983).CrossRefGoogle Scholar
14. Merz, J.L., Wu, Z.L., van den Berg, L., and Schnepple, W.F., Nucl. Instr. Meth. 213, 51 (1983).CrossRefGoogle Scholar
15. Bao, X.J., Schlesinger, T.E., James, R.B., Cheng, A.Y., and Ortale, C., Mat. Res. Soc.Symp. Proc. 163, 1027 (1990).CrossRefGoogle Scholar
16. Sessler, G.M., editor, Eletrets, 2nd ed. (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
17. Bush, A.A., and Laptev, A.G., Sov. Phys. Sol. Stat. 31, 535 (1989).Google Scholar
18. Wohlfarth, E.P., editor, Ferroelectricity, 1st ed. (John Wiley & Sons Inc., New York, 1967).Google Scholar