Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T09:05:55.852Z Has data issue: false hasContentIssue false

Intraband Absorption in Ge/Si Self-Assembled Quantum Dots

Published online by Cambridge University Press:  10 February 2011

P. Boucaud
Affiliation:
LEF, Université Paris XI, UMR CNRS 8622, Bât. 220, 91405 Orsay, France, phill@ief.u-psud.fr
V. Le Thanh
Affiliation:
LEF, Université Paris XI, UMR CNRS 8622, Bât. 220, 91405 Orsay, France
S. Sauvage
Affiliation:
LEF, Université Paris XI, UMR CNRS 8622, Bât. 220, 91405 Orsay, France
T. Brunhes
Affiliation:
LEF, Université Paris XI, UMR CNRS 8622, Bât. 220, 91405 Orsay, France
F. Fortuna
Affiliation:
CSNSM, Université Paris XI, Bait. 108, 91405 Orsay, FRANCE
D. Debarre
Affiliation:
LEF, Université Paris XI, UMR CNRS 8622, Bât. 220, 91405 Orsay, France
D. Bouchier
Affiliation:
LEF, Université Paris XI, UMR CNRS 8622, Bât. 220, 91405 Orsay, France
Get access

Abstract

Mid-infrared intraband absorption in Ge/Si self-assembled quantum dots is reported. The self-assembled quantum dots are grown by ultra-high-vacuum chemical vapor deposition. The intraband absorption is observed using a photoinduced absorption technique. The mid-infrared absorption, which is in-plane polarized, is maximum around 300 meV. The absorption is attributed to a quantum dot hole transition between bound and continuum states. The absorption cross section is deduced from the saturation of the photoinduced intraband absorption. An inplane absorption cross section as large as 2 × 10−13 cm2 is measured for one dot plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P., and Petroff, P. M., Phys. Rev. Lett. 73, 2252 (1994).10.1103/PhysRevLett.73.2252Google Scholar
2. Sauvage, S., Boucaud, P., Julien, F. H., Gérard, J. M., and Thierry-Mieg, V., Appl. Phys. Lett. 71, 2785 (1997).10.1063/1.120133Google Scholar
3. Sauvage, S., Boucaud, P., Glotin, F., Prazeres, R., Ortega, J. M., Lemaitre, A., Gérard, J.M., and Thierry-Mieg, V., Phys. Rev. B 59, 9830 (1999).10.1103/PhysRevB.59.9830Google Scholar
4. Berryman, K. W., Lyon, S. A., and Segev, M., Appl. Phys. Lett. 70, 184 (1997).10.1063/1.118714Google Scholar
5. Maimon, S., Finkman, E., Bahir, G., Schacham, S. E., Garcia, J. M., and Petroff, P. M., Appl. Phys. Lett. 73, 2003 (1998).10.1063/1.122349Google Scholar
6. Kim, S., Mohseni, H., Erdtmann, M., Michel, E., Jelen, C., and Razeghi, M., Appl. Phys. Lett. 73, 963 (1998).10.1063/1.122053Google Scholar
7. Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett. 73, 1937 (1998).10.1063/1.122328Google Scholar
8. Boucaud, P., Thanh, V. Le, Sauvage, S., Debarre, D., and Bouchier, D., Appl. Phys. Lett. 74, 401 (1999).10.1063/1.123083Google Scholar
9. Liu, J. L., Wu, W. G., Ballandin, A., Jin, G. L., and Wang, K. L., Appl. Phys. Lett. 74, 185 (1999).10.1063/1.123287Google Scholar
10. Thanh, V. Le, Boucaud, P., Debarre, D., Zheng, Y., Bouchier, D., and Lourtioz, J.M., Phys. Rev. B 58, 13115 (1998).10.1103/PhysRevB.58.13115Google Scholar
11. Thanh, V. Le, Yam, V., Boucaud, P., Fortuna, F., Ulysse, C., Bouchier, D., Vervoort, L., and Lourtioz, J.M., unpublished.Google Scholar
12. Walle, C. G. Van de, and Martin, R. M., Phys. Rev. B 34, 5621 (1986).10.1103/PhysRevB.34.5621Google Scholar
13. Boucaud, P., Gao, L., Moussa, Z., Visocekas, F., Julien, F. H., Lourtioz, J. M., Sagnes, I., Campidelli, Y., and Badoz, P. A., Appl. Phys. Lett. 67, 2948 (1995).10.1063/1.114821Google Scholar
14. Sauvage, S., Boucaud, P., Gérard, J. M., and Thierry-Mieg, V., Phys. Rev. B 58, 10562 (1998).10.1103/PhysRevB.58.10562Google Scholar
15. Sauvage, S., Boucaud, P., Julien, F.H., Gérard, J.M., and Marzin, J.Y., J. Appl. Phys. 82, 3396 (1997).10.1063/1.365654Google Scholar