Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T06:23:09.059Z Has data issue: false hasContentIssue false

Interplay of Soret vs. Normal Impurity Diffusion During Laser or E-Beam Induced Heat Flow Transients in Metals

Published online by Cambridge University Press:  15 February 2011

L.F. Dona' Dalle Rose
Affiliation:
Unità G.N.S.M.-C.N.R., Istituto di Fisica dell 'Università, 35100, Padova, Italy
A. Miotello
Affiliation:
Istituto per la Ricerca Scientifica e Tecnologica, 38050 Povo (Trento), Italy
Get access

Abstract

In the growing amount of the experimental data on the diffu sion processes of implanted impurities in a metal sample irradiated by highly energetic and very short pulses, some order may be introduced by the knowledge of the structure of induced thermal transient. The differences in such a structure due to two different energy sources (laser and electron beam) are de scribed with reference to the conditions under which Soret diffusion may be experimentally observed as distinct from nor mal diffusion. Laser induced transient seem to offer this possibility.

Some previously reported diffusion processes in laser irra diated systems are reinterpreted on this basis, showing the importance of the Soret effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laser-Solid Interactions and Laser Processing, 1978, ed. Ferris, S.D., Leamy, H.J. and Poate, J.M. (AIP, New York 1979).Google Scholar
2. Laser and Electron Beam Processing of Materials, 1979, ed. White, C.W. and Peercy, P.S. (Academic Press, New York 1980).Google Scholar
3. Laser and Electron Beam Solid Interaction and Materials Processing, ed. Gibbons, J.F., Hess, L.D., Sigmon, T.W. (North Holland, New York, Oxford 1981).Google Scholar
4. Donà dalle Rose, L.F. and Miotello, A., Rad. Eff. 53, 7 (1980).CrossRefGoogle Scholar
5. Brotto, R., Donà dalle Rose, L.F. and Miotello, A., in preparation.Google Scholar
6. Grün, A.E., Z. Naturforschung A 12, 89 (1956).CrossRefGoogle Scholar
7. Everhart, T.E. and Hoff, P.H., J.of Appl.Phys. 42, 5837 (1971).CrossRefGoogle Scholar
8. Kanaya, K., Okayama, S., J. Phys.D ­ Appl.Phys. 5, 43 (1972).CrossRefGoogle Scholar
9. Wood, R.F. and Giles, G.E., Phys. Rev. B 23, 2923 (1981), and references there in.CrossRefGoogle Scholar
10. De Groot, S.R. and Mazur, P., Non Equilibrium Thermodynamics (North Holland, Amsterdam 1962).Google Scholar
11. Miotello, A., Donà dalle Rose, L.F. and Desalvo, A., (1981), submitted to Appl. Phys. Lett.Google Scholar
12. Miotello, A., Donà dalle Rose, L.F. (1981), Phys. Lett. A, in press.Google Scholar
13. Della Mea, G., Donà dalle Rose, L.F., Mazzoldi, P. and Miotello, A., Rad. Eff. 46, 133 (1980).CrossRefGoogle Scholar
14. Wampler, W.R., Follstaedt, D.M. and Peercy, P.S., p. 567 of ref. 3.Google Scholar
15. Pronko, P.P., Wiedersich, H., Seshan, K., Helling, A.L., Lograsso, T.A. and Baldo, P.M., p.599 of ref.3.Google Scholar
16. Edwards, J.B., Hucke, E.E. and Martin, J.J., Metallurgical Rev. 13, 1 (1968).Google Scholar
17. See for instance Bhat, B.N. and Swalin, R.A., Acta Met. 20, 1387 (1972).CrossRefGoogle Scholar
17a Murarka, S.P., Kim, T.Y., Hsieh, M.Y. and Swalin, R.A., Acta Met. 22, 185 (1974), andCrossRefGoogle Scholar
17b Shewmon, P.G., Acta Met. 8, 605 (1960).CrossRefGoogle Scholar
18. Adda, Y., J. Philibert, La diffusion dans les solids, Institut National des Sciences et Techniques Nuclèaires, Press Universitaires de France, Paris 1966, Volume 2, Chap. XV.Google Scholar