Skip to main content Accessibility help
×
Home

Internal Field Distribution in Organic Light Emitting Diodes with Double Layer Structure

  • C. Hochfilzer (a1), T. Jost (a1), A. Niko (a1), W. Graupner (a1), G. Leising (a1), C. W. Tang (a2), E. Forsythe (a3) and Y. Gao (a3)...

Abstract

Double layer organic light emitting devices (OLED) are constructed by evaporating tris(8 -hydroxy) quinoline aluminum (Alq3) on a spin cast thin film of a methyl substituted ladder type poly -para -phenylene (m -LPPP). A thick layer of Mg:Ag is used as the cathode material. These organic materials are very suitable for application in OLEDs both, as transporting materials as well as active layers. Alq3 predominantly transports electrons while m - LPPP is a conjugated polymer having higher hole mobilities. Due to these transport properties the formation and radiative recombination of the excitons in ITO/m -LPPP/Alq3/Mg:Ag devices occur close to the m -LPPP/Alq3 interface. We compare the device performance of OLEDs with varying Alq3 layer thickness (0, 50, 150, 300, 500Å) and constant m -LPPP layer thickness (900Å). A difference in the device parameters and performance as a function of the Alq3 layer thickness is observed. We analyze these results with respect to the internal electric field distribution of the double layer devices derived from electroabsorption measurements.

Copyright

References

Hide All
1. Tang, C. W., VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987)
2. Tang, C. W., VanSlyke, S. A., Chen, C. H., J. Appl. Phys. 65, 3610 (1989)
3. Tasch, S., Brandstätter, C., Meghdadi, F., Leising, G., Froyer, G., Athouel, L., Adv. Mater. 9, 33 (1997)
4. Tang, C.W., Williams, D.J., Chang, J. C., US-Patent 5,294,870, (1994)
5. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. Kraft, A., Holmes, A. B., Nature 347, 530 (1990)
6. Grem, G., Leditzky, G., Ullrich, B., Leising, G., Adv. Mater. 4, 36 (1992)
7. Tasch, S., Niko, A., Leising, G., Scherf, U., Appi. Phys. Lett. 68, 1090 (1996).
8. Scherf, U., Bohnen, A., Müllen, K., Makromol. Chem. 193, p. 1127 (1992).
9. Freeman, D. C., White, C. E., J. A. Chem. Soc. 78, p. 2,68 (1956)
10. Hochfilzer, C., Leising, G., Forstythe, E., Gao, Y., Tang, C. W., submitted to Appl. Phys. Lett.
11. Meinhardt, G., Horvath, A., Weiser, G., Leising, G., Synth. Met. 84, p. 669 (1997).
12. Garbuzov, D. Z., Bulovic, V., Burrrows, P. E., Forrest, S. R., Chem. Phys. Lett. 249, 433 (1996).
13. Aspnes, D. E., Rowe, J. E., Phys. Rev. B 5, p. 4022 (1972)
14. Campbell, I. H., Joswick, M. D., Parker, I. D., Appl. Phys. Lett. 67, p. 3171 (1995)
15. Niko, A., Hochfilzer, C., Jost, T., Meghdadi, F., Graupner, W., Leising, G., this proceedings

Related content

Powered by UNSILO

Internal Field Distribution in Organic Light Emitting Diodes with Double Layer Structure

  • C. Hochfilzer (a1), T. Jost (a1), A. Niko (a1), W. Graupner (a1), G. Leising (a1), C. W. Tang (a2), E. Forsythe (a3) and Y. Gao (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.