Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T17:40:32.573Z Has data issue: false hasContentIssue false

Interfacial Reactions of Ag Thin Films On (001) GaAs

Published online by Cambridge University Press:  25 February 2011

J. S. Chen
Affiliation:
California Institute of Technology, CA 91125
E. Kolawa
Affiliation:
California Institute of Technology, CA 91125
R. P. Ruiz
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, CA 91109
M-A. Nicolet
Affiliation:
California Institute of Technology, CA 91125
Get access

Abstract

Ag thin films of 90 nm in thickness were deposited on (001) GaAs substrates, with or without an amorphous Ta-Si-N cap layer on top. All samples were annealed at 550°C for 30 min in an Ar flow. The interaction between the Ag film and the GaAs substrate is characterized by MeV 4He backscattering spectrometry, scanning electron microscopy and cross-sectional transmission electron microscopy.

Without encapsulants, As is lost by sublimation and Ga-oxide forms on the Ag surface during the annealing process. Elongated prismatic triangular pits bounded by GaAs {111} planes develop in the substrate that are filled with Ag. Also, the native oxide between the GaAs substrate and the polycrystalline Ag layer balls up after annealing. No Ag-Ga or Ag-As compound is produced. With a Ta-Si-N cap layer, the pits are almost totally absent, but the interfacial native oxide layer still balls up.a

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, J. S., Kolawa, E., Garland, C. M. and Nicolet, M-A., Appl. Phys. Lett. (submitted).Google Scholar
2. Ludeke, R., Chiang, T.-C. and Eastman, D. E., J. Vac. Sci. Technol. 21, 599(1982).Google Scholar
3. Chiang, T. T., Spindt, C. J., Spicer, W. E., Lindau, I. and Browning, R., J. Vac. Sci. Technol. B6, 1409 (1988).Google Scholar
4. Chiang, T. T., Wahi, A. K., Lindau, I. and Spicer, W. E., J. Vac. Sci. Technol. B7, 958(1989).CrossRefGoogle Scholar
5. Klohn, K. L. and Wandinger, L., J. Electrochem. Soc. 116, 507(1969).Google Scholar
6. Matino, H. and Tokunaga, M., J. Electrochem. Soc. 116, 709(1969).Google Scholar
7. Molarius, J. M., Kolawa, E., Morishita, K., Pan, E. T-S., Tandon, J. L. and Nicolet, M-A., Mater. Res. Soc. Symp. Proc. vol. 144. p. 525.Google Scholar
8. Molarius, J. M., Kolawa, E., Morishita, K., Nicolet, M-A., Tandon, J. L., Leavitt, J. A., and McIntyre, L. C. Jr, J. Electrochem. Soc. 138.,834 (1991).CrossRefGoogle Scholar
9. Sinha, A. K. and Poate, J. M., Appl. Phys. Lett. 23,666(1973).Google Scholar
10. Gatos, H. C. and Lavine, M. C., J. Electroclhem. Soc. 107,427(1960).Google Scholar
11. Tarui, Y., Komiya, Y. and Harada, Y., J. Electrochem. Soc. 118, 118(1971).CrossRefGoogle Scholar
12. Williams, R. E., Gallium Arsenic Processing Technique, chapter 5 (Artech House, Inc., Dedham, MA, 1984)Google Scholar
13. Adachi, S. and Oe, K., J. Electrochem. Soc. 130, 2427(1983).Google Scholar
14. Chien, C. J., Bravman, J. C. and R. Farrow, F. C., J. Appl. Phys. 68, 4343(1990).CrossRefGoogle Scholar
15. Chang, C. C., Citrin, P. H. and Schwartz, B., J. Vac. Sci. Technol. 14, 943(1977).Google Scholar
16. Bertrand, P. A., J. Vac. Sci. Technol. 18, 28(1981).CrossRefGoogle Scholar
17. Yoshiie, T., Bauer, C. L. and Milnes, A. G., Thin Solid Films 111, 149(1984).Google Scholar
18. Pugh, J. H. and Williams, R. S., J. Mater. Res. 1, 343(1986).CrossRefGoogle Scholar
19. Tsai, C. T. and Williams, R. S., J. Mater. Res. 1, 352(1986).Google Scholar