Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-21T19:12:08.380Z Has data issue: false hasContentIssue false

Interfacial Energy Reduction Analysis in Fibrous Structures

Published online by Cambridge University Press:  15 February 2011

A. C. Sandlin
Affiliation:
Metallurgy Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899
R. J. Schaefer
Affiliation:
Metallurgy Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899
Get access

Abstract

The morphology of directionally solidified CuAl-Pb monotectic alloys has been studied. The structure consisted of a hexagonal array of Pb rods in a Cu-based matrix. In addition, elongated grain boundaries in the Cu-based matrix with lens-shaped Pb fibers on the boundary and a “denuded zone”, depleted of Pb rods, were observed. Existence of these boundaries is shown to reduce the overall surface energy of the system leading to the formation of the elongated grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jackson, K. A. and Hunt, J. D., Trans Metall Soc AIME 236, 1129 (1966).Google Scholar
2. Zener, C., Trans Metall Soc AIME 167, 550 (1946).Google Scholar
3. Tiller, W. A., Liquid Metals and Solidification, (ASM, Cleveland, OH, 1958), p. 276.Google Scholar
4. Hillert, M. and Steinhäuser, H., Jernkontorets Ann 144, 520 (1960).Google Scholar
5. Chadwick, G. A., British Journal of Applied Physics 16 (8), 1095 (1965).CrossRefGoogle Scholar
6. Cahn, J. W., Metall. Trans. 10A, 119 (1979).Google Scholar
7. Cahn, J. W., Journal of Chemical Physics 66, 3667 (1977).Google Scholar
8. Grugel, R. and Hellawell, A., Metall. Trans. 12A, 669 (1981).Google Scholar
9. Derby, B. and Favier, J. J., Acta Metall. 31, 1123 (1983).Google Scholar
10. Flemings, M. C., Solidification Processing, (McGraw-Hill, NY, 1974).CrossRefGoogle Scholar
11. Nash, C. E., Journal of Crystal Growth 38, 155 (1977).Google Scholar
12. Eastwood, L. W., Trans Metall Soc AIME 111, 181 (1934).Google Scholar
13. Marich, S. and Jaffrey, D., Metall. Trans. 2, 2681 (1972).CrossRefGoogle Scholar
14. Chapman, A. T., Gerdes, R. J., Wilson, J. C. and Clark, G. W., Journal of Crystal Growth 13, 765 (1972).CrossRefGoogle Scholar
15. MacLeod, A. J and Double, D. D., In Situ Composites IV, (North Holland, New York, 1981) p. 253.Google Scholar
16. Andrews, J. B. and Sandlin, A. C., University of Alabama at Birmingham, Birmingham, AL, 1987 (unpublished).Google Scholar
17. Kamio, A., Tezuka, H., Kumai, S., and Takahashi, T., Transactions of the Japan Institute of Metals 25, 569 (1984).Google Scholar
18. Sandlin, A. C. and Andrews, J. B., National Institute of Standards and Technology, Gaithersburg, MD, 1990 (unpublished).Google Scholar
19. Grugel, R. N., Lograsso, T. A., and Hellawell, A., Met. Trans. 15A, 1003 (1984).CrossRefGoogle Scholar
20. Riquet, J. P and Durand, F., Journal of Crystal Growth 33, 303 (1976).CrossRefGoogle Scholar
21. Chang, C. E. and Wilcox, W. R., Journal of Crystal Growth 21, 135 (1974).Google Scholar
22. Kuo, W. H. S. and Wilcox, W. R., Journal of Crystal Growth 12, 191 (1972).Google Scholar
23. Riquet, J. P., Doctor of Science Thesis, Grenoble, France, 1975.Google Scholar
24. Bartholomew, D. M. L. and Hellawell, A., Joun. of Cry. Gro. 50, 453 (1980).Google Scholar
25. Clyne, T. W., Journal of Crystal Growth 50, 684 (1980).Google Scholar
26. Ejim, T. I. and Jesser, W. A., Journal of Crystal Growth 69, 509 (1984).Google Scholar