Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-29T08:49:48.422Z Has data issue: false hasContentIssue false

Interfacial Electronic Structure and Full Spectral Hamaker Constants of Si3N4 Intergranular Films from VUV and Sr-Veel Spectroscopy

Published online by Cambridge University Press:  15 February 2011

R. H. French
Affiliation:
DuPont Co. Central Research, Experimental Station, Wilmington DE 19880-0356
C. Scheu
Affiliation:
Max-Planck-Institut fur Metallforschung, Institut für Werkstoffwissenschaft Stuttgart, D70174, Germany
G. Duscher
Affiliation:
Max-Planck-Institut fur Metallforschung, Institut für Werkstoffwissenschaft Stuttgart, D70174, Germany
H. Müllejans
Affiliation:
Max-Planck-Institut fur Metallforschung, Institut für Werkstoffwissenschaft Stuttgart, D70174, Germany
M. J. Hoffmann
Affiliation:
Max-Planck-Institut fur Metallforschung, Institut für Werkstoffwissenschaft Stuttgart, D70174, Germany
R. M. Cannon
Affiliation:
Lawrence Berkeley Lab, Hearst Mining Bldg.University. of California.Berkeley, CA 94720
Get access

Abstract

The interfacial electronic structure, presented as the interband transition strength Jcv(ω) of the interatomic bonds, can be determined by Kramers Kronig (KK) analysis of vacuum ultraviolet (VUV) reflectance or spatially resolved valence electron energy loss (SR-VEEL) spectra. For the wetted interfaces in Si3N4, equilibrium thin glass films are formed whose thickness is determined by a force balance between attractive and repulsive force terms. KK analysis of Jcv(ω) to yield ξ(ξ) for the phases present, permits the direct calculation of the configuration-dependent Hamaker constants for the attractive vdW forces from the interfacial electronic structure.

Interband transition strengths and full spectral Hamaker constants for Si3N4 samples containing a SiYA1ON glass have been determined using SR-VEELS from grains and grain boundaries and compared with results from bulk VUV spectroscopy on separate samples of glass and nitride. The At2, Hamaker constant for Si3N4 with glass of the bulk composition is 8 zJ (zJ = 10−21 J) from the more established optical method. The EELS method permits the determination of vdW forces based upon actual local compositions and structure, which may differ noticeably from bulk standards. Current results show that full spectral Hamaker constants determined from VUV and SR-VEEL measurements of uniform bulk samples agree, but care must be taken in the single scattering and zero loss subtraction corrections, and more work is ongoing in this area. Still the results show that for the grain boundary films present in these polycrystalline Si3N4 samples the glass composition is of lower index of refraction. This can arise from increased oxygen content in the intergranular glass and leads to an increased value of the Hamaker constant (24 zJ) determined in situ from the SR-VEELS of a particular grain boundary film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mullejans, H., Bruley, J., French, R. H., Morris, P. A., “Quantitative Electronic Structure Analysis of α-A1203 Using Spatially Resolved Valence Electron Energy-Loss Spectra”, Proceedings of the MRS Symposium on “Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy”, ed. by Sarikaya, M., Isaacson, M., Wickramasighe, K., (1994).Google Scholar
2. Israelachvili, J. N, Intermolecular and Surface Forces, Second Edition, Academic Press, London (1992).Google Scholar
3. Clarke, D. H., “On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials,” J. Am. Ceram. Soc., 70,1522, (1987).Google Scholar
4. Chiang, Y. M., Silverman, L. E., French, H. H., Cannon, R. M., “The Thin Glass Film between Ultrafine Conductor Particles in Thick Film Resistors”, Journal of the American Ceramics Society, 77, 1143–52, (1994).Google Scholar
5. Loughin, S., French, R. H., Ching, W. Y., Xu, Y. N., Slack, G. A., “Electronic Structure of Aluminum Nitride: Theory and Experiment”, Applied Physics Letters, 63, 9, 1182–4, (1993).Google Scholar
6. Clarke, D. H., Thomas, G., “Grain Boundary Phases in a Hot-Pressed Si3N4 ,” J. Am. Ceram. Soc., 60, 491–5, (1977).Google Scholar
7. Lou, L. K. V., Mitchell, T. E., Heuer, A.H., “Impurity Phasesin Hot-Pressed Si3N4 ,” J. Am. Ceram. Soc., 61, 392-6, (1978).Google Scholar
8. Kleebe, H.-J., Cinibulk, M. K., Tanaka, I., Bruley, J., Cannon, R. M., Clarke, D. H., Hoffman, M. J., Rilde, M., “High Resolution Electron Microscopy of Grain Boundary Films in Silicon Nitride Ceramics”, Mat. Res. Soc. Syrnp. Proc., 287, 6578 (1993).Google Scholar
9. Kleebe, H.-J., Cinibulk, M. K., Cannon, R. M., Rühle, M., Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics,” J. Am. Ceram. Soc., 76 1969–77 (1993).Google Scholar
10. French, H. H., Cannon, R. M., DeNoyer, L. K., Chiang, Y.-M., “Full Spectral Calculation of Non-Retarded Hamaker Constants for Ceramic Systems from Interband Transition Strengths” Solid State lonics, (1995).Google Scholar
11. Ren, S.-Y., Ching, W.Y., “Electronic Structures of β- and α-Silicon Nitride”, Phys. Rev. B,23,5454–63, (1981).Google Scholar
12. Robertson, J., “The Electronic Properties of Silicon Nitride”, Phil. Mag. B, 44, 215–37, (1981).Google Scholar
13. Sokel, H. J., “The Electronic Structure of Silicon Nitride”, J. Phys. Chem. Sol., 41, 899906, 1980.Google Scholar
14. Ching, W.Y., Ren, S.Y., “Electronic Structures of Si2N20 and Ge2N20 Crystals”, Phys. Rev. B.,24,5788–95, (1981).Google Scholar
15. Morosanu, C.-E., “The Preparation, Characterization and Applications of Silicon Nitride Thin Films”, Thin Solid Films, 65, 171208, (1980).Google Scholar
16. Bulkin, P. V., Smart, P. L., Lacquet, B. M., “Optical Properties of SiNX Deposited by Electron Cyclotron Resonance Plasma-enhanced Deposition”, Optical Engineering, 33, 2894–7, (1994).Google Scholar
17. Mashita, M., Matsushima, K., “Optical Properties of Reactively-Evaporated Silicon Oxynitride Films”, Japan J. of Appl. Phys. Suppl. 2, PL 1 7614, (1974).Google Scholar
18. Livengood, H. E., Petrich, M. A., Hess, D. W., Reimer, J. A., “Structure and Optical Properties of Plasma-Deposited Fluorinated Silicon Nitride Thin Films”, J. Appl, Phys., 63, 2651–9, (1988).Google Scholar
19. Petalas, J., Logothetidis, S., “Tetrahedron-model Analysis of Silicon Nitride Thin Films and the Effect of Hydrogen and Temperature on their Optical Properties”, Phys. Rev. B, 50, 11801–16, (1994).Google Scholar
20. Krämer, M., Hoffman, M. J., Petzow, G., “Grain Growth Studies of Silicon Nitride Dispersed in an Oxynitride Glass”, J. Amer. Ceram. Soc., 76, 2778–84, (1993).Google Scholar
21. Hirsch, P., Howie, A., Nicholson, R., Pashley, D. W., Whelan, M. J., Electron Microscopy of Thin Crystals, Krieger Publishing Company, Florida, (1977).Google Scholar
22. French, H. H., “Laser-Plasma Sourced, Temperature Dependent VUV Spectrophotometer Using Dispersive Analysis,” Physica Scripta, 41. 4, 404–8, (1990).Google Scholar
23. Bortz, M. L., French, R. H., “Optical Reflectivity Measurements Using a Laser Plasma Light Source,” Appl. Phys. Lett., 55, 19, 1955–7, Nov. 8, (1989).Google Scholar
24. Johs, B., French, H. H., Kalk, F. D., McGahan, W. A., Woollam, J. A., “Optical Analysis of Complex Multilayer Structures Using Multiple Data Types”, SPIE Proceedings on Optical Interference Coatings, (1994).Google Scholar
25. Bortz, M. L., French, H. H., “Quantitative, FFT-Based, Kramers Kronig Analysis for Reflectance Data”, Applied Spectroscopy, 43, 8, 14981501, (1989).Google Scholar
26. KKDupont.ab v. 4.1, Spectrum Squared, Ithaca NY.Google Scholar
27. Grams/386 v. 3.0 lc, Galactic Industries, Salem NH.Google Scholar
28. French, H. H., Jones, D. J., Loughin, S.Interband Electronic Structure of α-Al203 up to 2167 K ”, Journal of the American Ceramics Society, 77, 412–22, (1994).Google Scholar
29. Wooten, F., Optical Properties of Solids Academic Press, New York, 49, (1972).Google Scholar
30. Gatan Software EI/P v. 2.1, Gatan Inc. Pleasanton CA.Google Scholar
31. Duscher, G., Müllejans, H., Rühle, M., “Improvements in Electron Energy Loss Spectrum Imaging” to be submitted.Google Scholar
32. Veels.ab, v. 1.6, Kkeels.ab v. 5.3e, Spectrum Square Associates, Ithaca NY 14850 USA.Google Scholar
33. Egerton, H. F., Electron energy-loss spectroscopy in the electron microscope, Plenum, NY, 232, 362 (1986).Google Scholar
34. Egerton, R. F., Electron energy-loss spectroscopy in the electron microscope, Plenum, NY, 361, (1986).Google Scholar
35. Mullejans, H., Bruley, J., French, R. H., Morris, P. A., “Quantitative Electronic Structure Analysis of α-A1203 Using Spatially Resolved Valence Electron Energy-Loss Spectra”, MRS Proceedings Symposium on “Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy”, ed. by Sarikaya, M., (1994).Google Scholar
36. Hamaker, H. C., “The London-Van der Waals Attraction between Spherical Particles,” Physica, 4, 10, 1058–72, (1937).Google Scholar
37. French, R. H., Cannon, R. M., DeNoyer, L. K., Chiang, Y.-M., “Full Spectral Calculation of Non-Retarded Hamaker Constants for Ceramic Systems from Interband Transition Strengths” to appear in Solid State Ionics, (1995).Google Scholar
38. Lifshitz, E. M., “The Theory of Molecular Attractive Forces between Solids,” Soviet Phys. JETP, 2, 7383, (1956).Google Scholar
39. Dzyaloshinskii, I. E., Lifshitz, E. M., Pitaevskii, L. P., “The General Theory of Van der Waals Forces,” Adv. Phys., 10, 38, 165209, (1961).Google Scholar
40. Ninham, B. W., Parsegian, V. A., “Van der Waals Forces Across Triple-Layer Films,” J. Chemical Physics”, 52, 4578–87, (1970). Our Equation 3 is identical to Ninham and Parseian's Equation 15, except that L2 in their equation defines a unit area whereas we define E per unit area so the L2 does not arise in Equation 3. We use the symbol L to represent the film thickness.Google Scholar
41. Hough, D. B., White, L. H., “The Calculation of Hamaker Constants from Lifshitz Theory with Application to Wetting Phenomena,” Advances in Colloid and Interface Science, 14 341, (1980).Google Scholar
42. London, F., “The General Theory of Molecular Forces,” Trans. Faraday Soc., 33, 826, (1937). F. London, Z. Physik. Chem., B11, 246, (1936).Google Scholar
43. Hamaker.ab, v. 2.35, Spectrum Square Associates, Ithaca NY 14850 USA.Google Scholar
44. Egerton, H. F., Electron enery-loss spectroscopy in the electron microscope, 362, 232 (Plenum, NY, 1986).Google Scholar
45. Of the composition discussed in Chiang, Y. M., Silverman, L. E., French, H. H., Cannon, H. M., “The Thin Glass Film between Ultrafine Conductor Particles in Thick Film Resistors”, Journal of the American Ceramics Society, 77, 1143–52, (1994).Google Scholar