Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T11:00:50.941Z Has data issue: false hasContentIssue false

Interface Formation and the Heteroepitaxy of ZnSe on Si.

Published online by Cambridge University Press:  28 February 2011

R. D. Bringans
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
L.-E. Swartz
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. C. Tramontana
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Zinc selenide films have been grown heteroepitaxially on Si(100) substrates by molecular beam epitaxy. The growth has been carried out for raised substrate temperatures and also at room temperature followed by solid-phase epitaxial (SPE) regrowth. The ZnSe films have been characterized by a number of surface-sensitive techniques and both the interface and the bulk material have been examined with high resolution transmission electron microscopy (HRTEM). We find that an interlayer, which is most likely SiSex, is present between the ZnSe film and the Si substrate for growths made at 300 °C and causes loss of epitaxy. In the case of room temperature deposition and SPE, it is absent, leading to good epitaxy. In the latter situation, the films are very uniform and there is a 4° rotation of the ZnSe crystal axes relative to those of the Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bringans, R. D. and Olmstead, M. A., Phys. Rev. B, 39, 12985, (1989).10.1103/PhysRevB.39.12985Google Scholar
2. Krusor, B. S., Biegelsen, D. K., Yingling, R. D. and Abelson, J. R., J. Vac. Sci. and Technol., B7 129 (1989)10.1116/1.584436Google Scholar
3. Mino, N., Kobayashi, M., Konagi, M. and Takahashi, K., J. Appl. Phys., 58, 793 (1985).10.1063/1.336197Google Scholar
4. Park, R. M. and Mar, H. A., Appl. Phys. Lett.,48, 529, (1986).10.1063/1.96496Google Scholar
5. Biegelsen, D. K., Ponce, F. A., Smith, A. J. and tramontana, J. C., J. Appl. Phys., 61, 1856 (1987).10.1063/1.338029Google Scholar
6. Lee, J. W., Salano, J. P., Gale, R. P. and Fan, J. C. C., Mat. Res. Soc. Proc., 91, 33, (1987).10.1557/PROC-91-33Google Scholar
7. Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A. and Ishida, K., Mat. Res. Soc. Proc., 91, 63, (1987).10.1557/PROC-91-63Google Scholar
8. Ghandi, S. K. and Ayers, J. E., Appl. Phys. Lett.,53 1204, (1988).10.1063/1.100020Google Scholar
9. Varrio, J., Salokatve, A., Asonen, H., Hovinen, M., Pessa, M., Ishida, K. and Katajima, H., Mat. Res. Soc. Proc., 116, 91, (1988).10.1557/PROC-116-91Google Scholar
10. Kleiman, J., Park, R. M. and Mar, H. A., J. Appl. Phys, 64, 1201, (1988).10.1063/1.341885Google Scholar
11. Rajkumar, K. C., Madhukar, A., Liu, J. K. and Grunthaner, F. J., Appl. Phys. Lett., 56, 1160,(1990).10.1063/1.102549Google Scholar
12.See, for example, Olego, D., J. Vac. Sci. Technol., B6, 1193, (1988).10.1116/1.584277Google Scholar
13. Tamargo, M. C., deMiguel, J. L., Turco, F. S., Skomme, B. J., Meynadier, M. H., Nahory, R. E., Huang, D. M. and Farrell, H. H., SPIE proceedings, 1037, 73 (1988).10.1117/12.951016Google Scholar