Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T11:13:10.447Z Has data issue: false hasContentIssue false

Interface Failure of Gold Covered SiO2 Substrate With TiW and Nb Intermediate Adhesion Layers

Published online by Cambridge University Press:  22 February 2011

M. Liehr
Affiliation:
Laboratoire de Spectroscopie Electronique, IRIS, FNDP, 61 rue de Bruxelles B-5000 Namur, Belgium.
J. P. Delrue
Affiliation:
Laboratoire de Spectroscopie Electronique, IRIS, FNDP, 61 rue de Bruxelles B-5000 Namur, Belgium.
N. Herbots
Affiliation:
Laboratoire de Spectroscopie Electronique, IRIS, FNDP, 61 rue de Bruxelles B-5000 Namur, Belgium.
R. Vanden Berghe
Affiliation:
Laboratoire de Spectroscopie Electronique, IRIS, FNDP, 61 rue de Bruxelles B-5000 Namur, Belgium.
R. Caudano
Affiliation:
Laboratoire de Spectroscopie Electronique, IRIS, FNDP, 61 rue de Bruxelles B-5000 Namur, Belgium.
Get access

Abstract

In this paper, we report an electron microscopy study (SEM and TEM) of the Au-TiW-SiO2 structure annealed in ambient air up to 600°C. Scanning Auger microscopy has also been used to characterize the interfaces. Growth of pyramid- like structures was found to occur under heat treatment above 450°C. Volume increase and adhesion failure due to oxidation of the TiW layer and weak points in the Au top layer were found to be at the origin of this particular growth. Similar surface failures have been reported under oxidation at higher temperature for the tungsten silicide – SiO2 systems. According to the assumed growth mechanism, the necessary conditions for a pyramid growth have been defined and checked on another multilayer structure, that is the Au-Nb-SiO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ho, P. S., Thin Solid Films 96, 301 (1982) ; C.Y. Ting and M. Wittmer, Thin Solid Films 96, 327 (1982).CrossRefGoogle Scholar
[2] Cummingham, J.A., Fuller, C.R.,Haywood, C.T., IEEE Trans.Reliab. 19,182 (1970).CrossRefGoogle Scholar
[3] Liehr, M.,Delrue, J.P., Caudano, R., Berghe, R.A.L. Vanden, Vlaeminck, R. and Loss, H., J. Vac. Sci. Technol. 92, 288 (1984)CrossRefGoogle Scholar
[4] Sinha, A.K., J. Vac. Sci. Technol. 19 (3), 778 (1981)Google Scholar