Skip to main content Accessibility help
×
Home

Interface Effects on the Mechanical Properties of Nanocrystalline Nanolaminates

  • Alan F. Jankowski (a1)

Abstract

Nanocrystalline nanolaminate (ncnl) structures are widely used in the study of physical properties in order to engineer materials for a variety of industrial applications. Often, novel and interesting mechanical behaviours that are found in nanolaminate materials can be linked with two characteristic features of structure. These are the layer pair spacing and the grain size. For the case of nanolaminates synthesized by physical vapor deposition processes, the layer spacing corresponds with the repeating sequence of layer pairs and can be referred to as composition wavelength. The grain size is the average width of the tapered columnar structure along the growth direction. Since the mechanical properties of strength and hardness are known to functionally vary with the separation between dislocations in crystalline materials, both structural features can potentially contribute to the total interfacial area and the characteristic separation of interfaces that mitigate dislocation motion. In this investigation, the individual contribution of layer pair spacing and grain size to the total interfacial structure are each quantified in an assessment of strength and hardness. A model is proposed for the total interfacial area of the material volume under plastic deformation that can quantify the interfacial area contribution from the layer pairs and the grain size. It is anticipated that each structural feature can potentially dominate the plastic deformation of the nanolaminate as dependent upon the specific layer pair spacing, the grain size, and the extent of plastic deformation.

Copyright

References

Hide All
1 Jankowski, A.F., Makowiecki, D.M., et al., J. Appl. Phys. 65 (1989) 44504451
2 Jankowski, A.F., Bionta, R.M. and Gabriele, P.C., J. Vac. Sci. Technol. A 7 (1989) 210213
3 Jankowski, A.F., Optical Eng. 29 (1990) 968972
4 Jankowski, A.F., SPIE Conf. Proc. 1738 (1992) 10-21
5 Childress, J.R., Chien, C.L. and Jankowski, A.F., Phys. Rev. B 45 (1992) 28552862
6 Simopoulos, A., Devlin, E., et al., Phys. Rev. B 54 (1996) 99319941
7 Jankowski, A.F. and Tsakalakos, T., Metall. Trans. A 20 (1989) 357362
8 Jankowski, A.F. and Saw, C.K., Scripta Mater. 51 (2004) 119124
9 Jankowski, A.F., Defect and Diffusion Forum 266 (2007) 1328
10 Makowiecki, D.M., Jankowski, A.F., et al., J. Vac. Sci. Technol. A 8 (1990) 39103913
11 Jankowski, A.F., Wall, M.A., et al., NanoStructured Mater. 9 (1997) 467471
12 Jankowski, A.F., Hayes, J.P., et al., Thin Solid Films 308/309 (1997) 94100
13 Jankowski, A.F., Hayes, J.P., and Saw, C.K., Phil. Mag. 87 (2007) 23232334
14 Jankowski, A.F., Thin Solid Films 220 (1992) 166171
15 Jankowski, A., Hayes, J., Nilsen, J., et al., Thin Solid Films 469470 (2004) 372-376
16 Jayakody, S., Chaudhuri, J. and Jankowski, A.F., J. Mater. Sci. 32 (1997) 26052609
17 Chaudhuri, J., Alyan, S.M. and Jankowski, A.F., Thin Solid Films 219 (1992) 6368
18 Chaudhuri, J., Shah, S., et al., J. Appl. Phys. 71 (1992) 38163820
19 Jankowski, A.F., Superlattices and Microstructures 6 (1989) 427429
20 Kohn, V.G., Physica Status Solidi (b) 187 (1995) 61-70
21 Schweitz, K.O, Chevallier, J., Bottiger, J., et al., Phil. Mag. A 81 (2001) 20212032
22 Jankowski, A.F., J. Appl. Phys. 71 (1992) 17821789
23 Wall, M.A. and Jankowski, A.F., Thin Solid Films 181 (1989) 313321
24 Wang, Y.M. and Ma, E., Applied Physics Letters 85 (2004) 27502752
25 Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E., Mater. Sci. and Eng. A 381 (2004) 7179
26 Carreker, R.P. and Hibbard, W.R., Acta Metallurgica 1 (1953) 656658
27 Lu, L., Li, S.X., Lu, K., Scripta Materialia 45 (2001) 11631169
28 Weertman, J.R., in Nanostructured Materials, Koch, C. (ed.), William Andrew Press, Norwich (2007) pp 537564
29 Chen, M., Ma, E., and Hemker, K., in NanoMaterials Handbook, Gogotsi, Y. (ed.), CRC Press, New York (2006) pp 407529
30 Hall, E.O., Proc. Physical Society B 64, (1951) 747753
31 Hall, E.O., Journal of Mechanics and Physics of Solids 1 (1953) 227233
32 Petch, N.J., Journal Iron Steel Institute 174 (1953) 2528
33 Petch, N.J., Progress in Metal Physics 5 (1954) 110
34 Petch, N.J., Acta Metallurgica 12 (1964) 5965
35 Douthwaite, R.M. and Petch, N.J., Acta Metallurgica 18 (1970) 211216
36 Petch, N.J. and Armstrong, R.W., Acta Metallurgica Materialia 38 (1990) 26952700
37 Chokshi, A.H, Rosen, A., Karch, J., Gleiter, H., Scripta Metallurgica 23 (1989) 16791683
38 Schwaiger, R., Moser, B., et al., Acta Materialia 51 (2003) 51595172
39 Schuh, C., Nieh, T.G., Yamasaki, T., Scripta Materialia 46 (2002) 735740
40 Schuh, C., Nieh, T.G., Iwasaki, H., Acta Materialia 51 (2003) 431443
41 Swygenhoven, H. Van, Farkas, D., and Caro, A., Phys. Rev. B 62 (2000) 831838
42 Ungár, T., Ott, S., Sanders, P., Borbély, A., and Weertman, J., Acta Mater. 46 (1998) 36933699
43 Ke, M., Hackney, S., Milligan, W., and Aifantis, E.C., Nanostructured Mater. 5 (1995) 689697
44 Shan, Z.W., Stach, E.A., et al., Science 305 (2004) 654657
45 Wang, Y.M., Li, J. Jr., et al., , Proc. National Acad. Sci. U.S.A. 104 (2007) 1115511160
46 Jankowski, A. and Tsakalakos, T., J. Applied Physics 57 (1985) 18351838
47 Jankowski, A.F., Sedillo, E.M. and Hayes, J.P., Japan. J. Appl. Phys. 33 (1994) 50195025
48 Jankowski, A.F., Surface and Coatings Technology 203 (2008) 484489
49 Jankowski, A.F. and Shewbridge, J.F., Materials Letters 4 (1986) 313315
50 Koehler, J.S., Physical Review B 2 (1970) 547551
51 Chu, X. and Barnett, S.A., J. Applied Physics 77 (1995) 44034411
52 Xu, J., Kamiko, M., et al., J. Applied Physics 89 (2001) 36743678
53 Li, G., Lao, J., Tian, J., Han, Z., and Gu, M., J. Applied Physics 95 (2004) 9296
54 Daia, M. Ben, Aubert, P., Labdi, S., et al., J. Applied Physics 87 (2000) 77537757
55 Wei, L., Kong, M., Dong, Y., and Li, G., J. Applied Physics 98 (2005) 074302-1-4
56 Cahn, J.W., Acta Metallurgica 11 (1963) 12751282
57 Kato, M., Mori, T., and Schwartz, L.H., Acta Metallurgica 28 (1980) 285290
58 Taylor, G.I., Journal of the Institute of Metals, 62 (1938) 307324
59 Lee, K. M., Yeo, C. D., Polycarpou, A. A., Experimental Mechanics 47 (2007) 107121
60 Dao, M., Lu, L., Asaro, R.J., Hosson, J.T.M. De, and Ma, E., Acta Mater. 55 (2007) 40414065
61 Gu, C. D., Lian, J. S., Jiang, Q., Zheng, W.T., J. Physics D: Appl. Phys. 40 (2007) 74407446
62 Zhu, T., Li, J., Samanta, A., et al., Proc. National Acad. Sci. U.S.A. 104 (2007) 30313036
63 Burwell, J.T. and Strang, C.D., Proc. Roy. Soc. Lond. A, Math. Phys. Sci. 212 (1952) 470477
64 Pande, C.S., Masumura, R.A., and Armstrong, R.W., Nanostructured Mater. 2 (1993) 323331
65 and, T.G. Nieh Wadsworth, J., Scripta Metallurgica et Materialia 25 (1991) 955958
66 Chen, M., Ma, E., and Hemker, K., in Nanomaterials Handbook, Gogotsi, Y. (ed.), Taylor, and Francis, Boca Raton (2006) p. 523
67 Hahn, H., Mondal, P., and Padmanabhan, K.A., Nanostructured Materials 9 (1997) 603606
68 Kumar, K.S., Suresh, S., Chisholm, M.F., et al., Acta Mater. 51 (2003) 387405
69 Yu, M.. Gutkin, I.A. , Ovid'ko, and Skiba, N.V., Acta Materialia 52 (2004) 17111720
70 Benkassem, S., Capolungo, L., and Cherkaoui, M., Acta Materialia 55 (2007) 35633572
71 Jankowski, A.F., J. Magnetism and Magnetic Materials 126 (1993) 185191
72 Oliver, W.C. and Pharr, G.M., J. Materials Research 7 (1992) 15641583
73 Hughes, G.D., Smith, S.D., Pande, C.S., et al., Scripta Metallurgica 20 (1986) 9397
74 Gifkins, R.C., Optical Microscopy of Metals, Elsevier, New York (1970) p. 178
75 Feldman, C., Ordway, F., and Bernstein, J., J. Vac. Sci. Technol. A 8 (1990) 117122
76 Giardini, A.A., The American Mineralogist 43 (1958) 957969
77 Morris, J.W. Jr., Inter. Offshore Polar Engineering Conf. Proc. 16 (2007) 28142818

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed