Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T20:30:29.312Z Has data issue: false hasContentIssue false

Interface Control in All MOD Coated Conductors: Influence on Critical Currents

Published online by Cambridge University Press:  01 February 2011

Alberto Pomar
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Mariona Coll
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Andrea Cavallaro
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Jaume Gàzquez
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Narcis Mestres
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Felip Sandiumenge
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Teresa Puig
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Xavier Obradors
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la U.A.B., 08193 Bellaterra,Spain
Get access

Abstract

In this work we will report our recent progress in the control of the interface quality between buffer layers and YBCO thin films grown by the trifluoroacetates route (TFA) and how it influences the critical current of the coated conductors. We have mainly focused on vacuum and metalorganic deposited (MOD) fluorite-like CeO2 buffer layers and on MOD perovskite SrTiO3 buffer layers. We will show that for vacuum CeO2 buffer layers, microcracks at the surface can be controlled by the means of thermal treatments. Coated conductors TFA-YBCO/CeO2sputt/YSZ/CeO2/Ni with Jc(77K)˜1MA/cm2 can be grown even in the presence of these microcracks. For MOD SrTiO3 we will show that growing the buffer layer at low temperature reduces surface roughness and multilayers with high critical currents can be achieved. An all-chemical coated conductor has been grown TFA-YBCO/SrTiO3MOD/BaZrO3MOD/NiO-SOE/Ni with promising in-plane texture, Δ φYBCO=6.6°. For MOD CeO2 buffer layers, thermal annealings in oxidizing atmospheres lead to atomically flat surfaces that avoid the typical polycrystalline surfaces observed in MOD CeO2 grown in Ar/H2. High Jc multilayers can be achieved and the first all chemical coated conductor in IBAD tapes TFA-YBCO/CeO2MOD/YSZIBAD/SS has been obtained with Jc(60K)=2.3MA/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, Y., Kakimoto, K., Yamada, Y., Izumi, T., Saitoh, T., and Shiohara, Y., MRS Bulletin 29, 564 (2004).Google Scholar
2 Rupich, M. W., Verebelyi, D. T., Zhang, W., Kodenkandath, T., and Li, X., MRS Bulletin 29, 572 (2004).Google Scholar
3 Araki, T. and Hirabayashi, I., Supercond.Sci.Technol. 16, R71 (2003).Google Scholar
4 Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Pinol, S., Mestres, N., Castano, O., Coll, M., Cavallaro, A., Palau, A., Gázquez, J., Gutiérrez, J., Romá, N., Ricart, S., Moret, J. M.ó, Rossell, M., and Tendeloo, G. van, Supercond.Sci.Technol. 17, 1055 (2004).Google Scholar
5 Castaño, O., Cavallaro, A., Palau, A., Gonzalez, J. C., Rossell, M., Puig, T., Sandiumenge, F., Mestres, N., Piñol, S., Pomar, A., and Obradors, X., Supercond.Sci.Technol. 16, 45 (2003).Google Scholar
6 Sandiumenge, F., Cavallaro, A., Gázquez, J., Puig, T., and Obradors, X., Submitted (2005).Google Scholar
7 Moenter, B., Getta, M., Kreiskott, S., Piel, H., Pupeter, N., and Pouryamout, J., IEEE Trans.Appl.Supercond. 13, 2543 (2003).Google Scholar
8 Kursumovic, A., Huhne, R., Tomov, R., Holzapfel, B., Glowacki, B. A., and Evetts, J. E., Physica C405, 219 (2004).Google Scholar
9 Usoskin, A., Freyhardt, H. C., Issaev, A., Dzick, J., Knoke, J., Oomen, M. P., Leghissa, M., and Neumueller, H. W., IEEE Trans.Appl.Supercond. 13, 2452 (2003).Google Scholar
10 Paranthaman, M., Goyal, A., List, F. A., Specht, E. D., Lee, D. F., Martin, P. M., He, Q., Christen, D. K., Norton, D. P., Budai, J. D., and Kroeger, D. M., Physica C275, 266 (1997).Google Scholar
11 Henderson, M. A., Perkins, C. L., Engelhard, M. H., Thevuthasan, S., and Peden, C. H.F., Surface Science 526, 1 (2003).Google Scholar
12 Matsumoto, K., Hirabayashi, I., and Osamura, K., Physica C378, 922 (2002).Google Scholar
13 Castaño, O., Cavallaro, A., Palau, A., Gonzalez, J. C., Rosell, M., Puig, T., Piñol, S., Mestres, N., Sandiumenge, F., Pomar, A., and Obradors, X., IEEE Trans.Appl.Supercond. 13, 2504 (2003).Google Scholar
14 Wang, H., Foltyn, S. R., Arendt, P. N., Jia, Q. X., Macmanus-Driscoll, J. L., Stan, L., Li, Y., Zhang, X., and Dowden, P. C., J.Mater.Res. 19, 1869 (2004).Google Scholar
15 Matsumoto, K., Takechi, A., Ono, T., Hirabayashi, I., and Osamura, K., Physica C392, 830 (2003).Google Scholar
16 Goyal, A., Paranthaman, M., and Sievers, S., Superconductivity for Electric Systems 2004 Annual Peer Review, Washington (2004).Google Scholar
17 Jarzina, H., Sievers, S., Jooss, C., Freyhardt, H. C., Lobinger, P., Roesky, H. W., Garleff, J., Lee, D. F., and Kröger, H., Supercond.Sci.Technol. 18, 260 (2005).Google Scholar
18 Bhuiyan, M. S., Paranthaman, M., Sathyamurthy, S., Aytug, T., Kang, S., Lee, D. F., Goyal, A., Payzant, E. A., and Salama, K., Supercond. Sci. Technol. 16, 1305 (2003).Google Scholar